Skip to main content

Advertisement

Log in

Recent Trends in Biologically Synthesized Metal Nanoparticles and their Biomedical Applications: a Review

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

In recent years, biologically synthesized metal nanoparticles have emerged as a dynamic field of research with significant implications for biomedical applications. This review explores the latest trends in the synthesis of metal nanoparticles using biological methods, encompassing plant extracts and microorganisms such as bacteria, yeasts, and fungi. These innovative approaches offer a sustainable, cost-effective, and environmentally friendly alternative to conventional chemical synthesis methods. Moreover, this review delves into the multifaceted biomedical applications of biologically synthesized metal nanoparticles. These applications include drug delivery systems, diagnostics, therapeutics, and imaging technologies, showcasing the versatility and promise of these nanomaterials in addressing contemporary biomedical challenges. In addition, the review addresses the critical issue of cytotoxicity, offering insights into the safety and viability of these biologically derived NPs for medical use. The exploration of recent trends and advancements in this field underscores the transformative potential of biologically synthesized metal nanoparticles in revolutionizing biomedical research and healthcare.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available upon reasonable request.

References

  1. Saravanan A, Kumar PS, Karishma S, Vo DVN, Jeevanantham S, Yaashikaa PR, George CS (2021) A review on biosynthesis of metal nanoparticles and its environmental applications. Chemosphere 264:128580

    Article  CAS  PubMed  Google Scholar 

  2. Kulkarni N, Muddapur U (2014) Biosynthesis of metal nanoparticles: a review. J Nanotechnol Article ID 510246, 8. https://doi.org/10.1155/2014/510246

  3. Kuppusamy P, Yusoff MM, Maniam GP, Govindan N (2016) Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications–an updated report. Saudi Pharm J 24(4):473–484

    Article  PubMed  Google Scholar 

  4. Dikshit PK, Kumar J, Das AK, Sadhu S, Sharma S, Singh S, Kim BS (2021) Green synthesis of metallic nanoparticles: applications and limitations. Catalysts 11(8):902

    Article  CAS  Google Scholar 

  5. Habibullah G, Viktorova J, Ruml T (2021) Current strategies for noble metal nanoparticle synthesis. Nanoscale Res Lett 16(1):47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sagadevan S, Imteyaz S, Murugan B, Lett JA, Sridewi N, Weldegebrieal GK, Oh WC (2022) A comprehensive review on green synthesis of titanium dioxide nanoparticles and their diverse biomedical applications. Green Process Synth 11(1):44–63

    Article  CAS  Google Scholar 

  7. Ojha S (2022) Green synthesis of metallic nanoparticles: Advancements and future perspectives. Biol Sci 2(3):262–268

    Google Scholar 

  8. Keat CL, Aziz A, Eid AM, Elmarzugi NA (2015) Biosynthesis of nanoparticles and silver nanoparticles. Bioresources Bioprocess 2(1):47

    Article  Google Scholar 

  9. Bhagat DS, Gurnule WB, Bumbrah GS, Koinkar P, Chawla PA (2023) Recent advances in biomedical applications of biogenic nanomaterials. Curr Pharm Biotechnol 24(1):86–100. https://doi.org/10.2174/1389201023666220513101628

    Article  CAS  PubMed  Google Scholar 

  10. Kulkarni D, Sherkar R, Shirsathe C, Sonwane R, Varpe N, Shelke S, More MP, Pardeshi SR, Dhaneshwar G, Junnuthula V, Dyawanapelly S (2023) Biofabrication of nanoparticles: sources, synthesis, and biomedical applications. Front Bioeng Biotech 2(11):1159193

    Article  Google Scholar 

  11. Guleria A, Sachdeva H, Saini K, Gupta K, Mathur J (2022) Recent trends and advancements in synthesis and applications of plant based green metal nanoparticles: a critical review. Appl Organomet Chem 36(9):e6778

    Article  CAS  Google Scholar 

  12. Kaur M, Gautam A, Guleria P, Singh K, Kumar V (2022) Green synthesis of metal nanoparticles and their environmental applications. Curr Opin Environ Sci Health 29(4):100390. https://doi.org/10.1016/j.coesh.2022.100390

    Article  Google Scholar 

  13. Kurhade P, Kodape S, Choudhury R (2021) Overview on green synthesis of metallic nanoparticles. Chem Pap 75(10):5187–5222

    Article  CAS  Google Scholar 

  14. Al-Radadi NS (2022) Laboratory scale medicinal plants mediated green synthesis of biocompatible nanomaterials and their versatile biomedical applications. Saudi J Biol Sci 29(5):3848–3870. https://doi.org/10.1016/j.sjbs.2022.02.042

  15. Das RK, Brar SK (2013) Plant mediated green synthesis: modified approaches. Nanoscale 5(21):10155–10162

    Article  CAS  PubMed  Google Scholar 

  16. Singh P, Kim YJ, Wang C, Mathiyalagan R, Yang DC (2016) The Development of a green approach for the biosynthesis of silver and gold nanoparticles by usingpanax ginsengroot extract, and their biological applications. Artif Cell Nanomed, Biotechnol 44:1–8. https://doi.org/10.3109/21691401.2015.1011809

    Article  CAS  Google Scholar 

  17. Duan H, Wang D, Li Y (2015) Green chemistry for nanoparticle synthesis. Chem Soc Rev 44:5778–5792. https://doi.org/10.1039/c4cs00363b

    Article  CAS  PubMed  Google Scholar 

  18. El-Kassas HY, El-Sheekh MM (2014) Cytotoxic activity of biosynthesized gold nanoparticles with an extract of the red seaweed corallina officinalis on the MCF-7 human breast cancer cell line. Asian Pac J Cancer Prev 15:4311–4317. https://doi.org/10.7314/APJCP.2014.15.10.4311

    Article  PubMed  Google Scholar 

  19. Habeeb Rahuman HB, Dhandapani R, Narayanan S, Palanivel V, Paramasivam R, Subbarayalu R, Muthupandian S (2022) Medicinal plants mediated the green synthesis of silver nanoparticles and their biomedical applications. IET Nanobiotechnology 16(4):115–144

    Article  PubMed  PubMed Central  Google Scholar 

  20. Pedroso-Santana S, Fleitas-Salazar N (2023) The use of capping agents in the stabilization and functionalization of metallic nanoparticles for biomedical applications. Part Part Syst Charact 40(2):2200146

    Article  CAS  Google Scholar 

  21. Yaqoob AA, Ahmad H, Parveen T, Ahmad A, Oves M, Ismail IM, Mohamad Ibrahim MN (2020) Recent advances in metal decorated nanomaterials and their various biological applications: a review. Front Chem 8:341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Song JY, Kwon EY, Kim BS (2010) Biological synthesis of platinum nanoparticles using Diopyros kaki leaf extract. Bioprocess Biosyst Eng 33(1):159–164

    Article  PubMed  Google Scholar 

  23. Philip D, Unni C, Aromal SA, Vidhu VK (2011) MurrayaKoenigii leaf-assisted rapid green synthesis of silver and gold nanoparticles. Spectrochim Acta A Mol BiomolSpectrosc 78(2):899–904

    Article  Google Scholar 

  24. Das RK, Pachapur VL, Lonappan L et al (2017) Biological synthesis of metallic nanoparticles: plants, animals and microbial aspects. Nanotechnol Environ Eng 2:18. https://doi.org/10.1007/s41204-017-0029-4

    Article  CAS  Google Scholar 

  25. Yaraki MT, ZahedNasab S, Zare I, Dahri M, Moein Sadeghi M, Koohi M, Tan YN (2022) Biomimetic metallic nanostructures for biomedical applications, catalysis, and beyond. Ind Eng Chem Res 61(22):7547–7593

  26. Aramwit P, Bang N, Ratanavaraporn J, Ekgasit S (2014) Green synthesis of silk sericin-capped silver nanoparticles and their potent anti-bacterial activity. Nanoscale Res Lett 9(1):79

    Article  PubMed  PubMed Central  Google Scholar 

  27. Romano G, Almeida M, Coelho AV, Cutignano A, Gonçalves LG, Hansen E, Khnykin D, Mass T, Ramšak A, Rocha MS, Silva TH (2022) Biomaterials and bioactive natural products from marine invertebrates : from basic research to innovative applications. Marine Drugs 20(4):219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li Xiangqian XuH, Chen ZS, Chen G (2011) Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomater 2011:270974

    Google Scholar 

  29. Singh P, Kim YJ, Zhang D, Yang DC (2016) Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol 34:588–599

    Article  CAS  PubMed  Google Scholar 

  30. Hulkoti NI, Taranath TC (2014) Biosynthesis of nanoparticles using microbes—a review. Colloids Surf, B 121:474–483

    Article  CAS  Google Scholar 

  31. Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Coll Interface Sci 156(1):1–13

    Article  CAS  Google Scholar 

  32. Iravani S (2014) Bacteria in nanoparticle synthesis: current status and future prospects. Int Sch Res Not 2014:359316

    PubMed Central  Google Scholar 

  33. Jayaseelan C, Rahuman AA, Kirthi AV, Marimuthu S, Santhoshkumar T, Bagavan A, Gaurav K, Karthik L, Rao KV (2012) Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochim Acta A Mol Biomol Spectrosc 90:78–84

    Article  CAS  PubMed  Google Scholar 

  34. Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M (2005) Extra-/intracellular biosynthesis of gold nanoparticles by an alkalotolerant fungus. Trichothecium sp J Biomed Nanotechnol 1:47–53. https://doi.org/10.1166/jbn.2005.012

    Article  CAS  Google Scholar 

  35. Husseiny SM, Salah TA, Anter HA (2015) Biosynthesis of size controlled silver nanoparticles by Fusariumoxysporum, their antibacterial and antitumor activities. Beni-Suef Univ J Basic Appl Sci 4:225–231

    Google Scholar 

  36. Korbekandi H, Mohseni S, Mardani Jouneghani R, Pourhossein M, Iravani S (2016) Biosynthesis of silver nanoparticles using Saccharomyces cerevisiae. Artif Cells Nanomed Biotechnol 44:235–239

    Article  CAS  PubMed  Google Scholar 

  37. Gericke M, Pinches A (2006) Microbial production of gold nanoparticles. Gold Bull 39:22–28. https://doi.org/10.1007/BF03215529

    Article  CAS  Google Scholar 

  38. Khan AA, Fox EK, Górzny MŁ, Nikulina E, Brougham DF, Wege C, Bittner AM (2013) pH control of the electrostatic binding of gold and iron oxide nanoparticles to tobacco mosaic virus. Langmuir 29:2094–2098

    Article  CAS  PubMed  Google Scholar 

  39. Steinmetz NF, Manchester M (2011) Viral Nanoparticles: Tools for Materials Science and Biomedicine. Pan Stanford Publishing, Singapore

    Google Scholar 

  40. Sirotkin S, Mermet A, Bergoin M, Ward V, Van Etten JL (2014) Viruses as Nanoparticles: Structure versus collective dynamics. Phys Rev E 90:022718

    Article  CAS  Google Scholar 

  41. Thangavelu RM, Ganapathy R, Ramasamy P, Krishnan K (2020) Fabrication of virus metal hybrid nanomaterials: An ideal reference for bio semiconductor. Arabian J Chem 13:2750–2765

    Article  CAS  Google Scholar 

  42. Love AJ, Makarov V, Yaminsky I, Kalinina NO, Taliansky ME (2014) The use of tobacco mosaic virus and cowpea mosaic virus for the production of novel metal nanomaterials. Virology 449:133–139. https://doi.org/10.1016/j.virol.2013.11.002

    Article  CAS  PubMed  Google Scholar 

  43. Zhang Y, Dong Y, Zhou J, Li X, Wang F (2018) Application of plant viruses as a biotemplate for nanomaterial fabrication. Molecules 23:2311

    Article  PubMed  PubMed Central  Google Scholar 

  44. Khan T, Ullah N, Khan MA, Mashwani ZU, Nadhman A (2019) Plant-based gold nanoparticles; a comprehensive review of the decade-long research on synthesis, mechanistic aspects and diverse applications. Adv Colloid Interface Sci 272:102017

    Article  CAS  PubMed  Google Scholar 

  45. Muddineti OS, Kumari P, Ajjarapu S, Lakhani PM, Bahl R, Ghosh B, Biswas S (2016) Xanthan gum stabilized PEGylated gold nanoparticles for improved delivery of curcumin in cancer. Nanotechnology 27(32):325101

    Article  PubMed  Google Scholar 

  46. Pooja D, Panyaram S, Kulhari H, Rachamalla SS, Sistla R (2014) Xanthan gum stabilized gold nanoparticles: characterization, biocompatibility, stability and cytotoxicity. Carbohydr Polym 110:1–9

    Article  CAS  PubMed  Google Scholar 

  47. Devi L, Gupta R, Jain SK, Singh S, Kesharwani P (2020) Synthesis, characterization and in vitro assessment of colloidal gold nanoparticles of Gemcitabine with natural polysaccharides for treatment of breast cancer. J Drug Deliv Sci Technol 56:101565

    Article  CAS  Google Scholar 

  48. Habeeb Rahuman HB, Dhandapani R, Narayanan S, Palanivel V, Paramasivam R, Subbarayalu R, Muthupandian S (2022) Medicinal plants mediated the green synthesis of silver nanoparticles and their biomedical applications. IET Nanobiotechnol 16(4):115–144

    Article  PubMed  PubMed Central  Google Scholar 

  49. Javed R, Zia M, Naz S, Aisida SO, Ain NU, Ao Q (2020) Role of capping agents in the application of nanoparticles in biomedicine and environmental remediation: recent trends and future prospects. J Nanobiotech 18:1–5

    Article  Google Scholar 

  50. Yaqoob AA, Ahmad H, Parveen T, Ahmad A, Oves M, Ismail IM, Mohamad Ibrahim MN (2020) Recent advances in metal decorated nanomaterials and their various biological applications: a review. Front Chem 8:341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pirtarighat S, Ghannadnia M, Baghshahi S (2019) Green synthesis of silver nanoparticles using the plant extract of Salvia spinosa grown in vitro and their antibacterial activity assessment. J Nanostruct Chem 9:1–9. https://doi.org/10.1007/s40097-018-0291-4

    Article  CAS  Google Scholar 

  52. Ghorbani A, Esmaeilizadeh M (2017) Pharmacological properties of Salvia officinalis and its components. J Tradit Complement Med 7(4):433–440

    Article  PubMed  PubMed Central  Google Scholar 

  53. Saud MA, Saud NA, Hamad MA, Farhan Gar L (2022) Role of Salvia officinalis Silver Nanoparticles in Attenuation Renal Damage in Rabbits Exposed to Methotrexate. Arch Razi Inst 77(1):151–162. https://doi.org/10.22092/ari.2021.356313.1821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Shankar SS, Ahmad A, Sastry M (2003) Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnol Prog 19(6):1627–31. https://doi.org/10.1021/bp034070w

    Article  CAS  PubMed  Google Scholar 

  55. Song JY, Kim BS (2009) Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst Eng 32(1):79–84. https://doi.org/10.1007/s00449-008-0224-6

    Article  CAS  PubMed  Google Scholar 

  56. Bhat RS, Almusallam J, Al Daihan S, Al-Dbass A (2019) Biosynthesis of silver nanoparticles using Azadirachtaindica leaves: characterisation and impact on Staphylococcus aureus growth and glutathione S transferase activity. IET Nanobiotechnol 13(5):498–502

    Article  PubMed Central  Google Scholar 

  57. Harsha L, Jain RK, Prasad AS (2022) Synthesis, characterization, and antimicrobial activity of silver nanoparticles derived from Mentha X piperita + Ocimumtenuiflorum: an in vitro study. J Adv Pharm Technol Res 13(Suppl 1):S272–S276. https://doi.org/10.4103/japtr.japtr_181_22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Raza MA, Kanwal Z, Riaz S, Amjad M, Rasool S, Naseem S, Abbas N, Ahmad N, Alomar SY (2023) In-vivo bactericidal potential of mangiferaindica mediated silver nanoparticles against aeromonas hydrophila in cirrhinusmrigala. Biomedicines 11(8):2272. https://doi.org/10.3390/biomedicines11082272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Joudeh N, Saragliadis A, Koster G, Mikheenko P, Linke D (2022) Synthesis methods and applications of palladium nanoparticles: A review. Front Nanotechnol 4:1062608

    Article  Google Scholar 

  60. Manjare SB, Pendhari PD, Badade SM et al (2021) Palladium nanoparticles: plant aided biosynthesis, characterization. Appl Chem Africa 4:715–730. https://doi.org/10.1007/s42250-021-00284-2

    Article  CAS  Google Scholar 

  61. Sriramulu M, Sumathi S (2018) Biosynthesis of palladium nanoparticles using Saccharomyces cerevisiae extract and its photocatalytic degradation behaviour. Adv Natl Sci: Nanosci Nanotechnol 9(2):025018

    Google Scholar 

  62. Attar A, AltikatogluYapaoz M (2018) Biosynthesis of palladium nanoparticles using Diospyros kaki leaf extract and determination of antibacterial efficacy. Prep BiochemBiotechnol 48(7):629–634. https://doi.org/10.1080/10826068.2018.1479862

    Article  CAS  Google Scholar 

  63. Wang W, Zhang B, Liu Q, Du P, Liu W, He Z (2018) Biosynthesis of palladium nanoparticles using Shewanellaloihica PV-4 for excellent catalytic reduction of chromium (VI). Environ Sci Nano 5(3):730–739

    Article  CAS  Google Scholar 

  64. Amaliyah S, Pangesti DP, Masruri M, Sabarudin A, Sumitro SB (2020) Green synthesis and characterization of copper nanoparticles using Piper retrofractumVahl extract as bioreductor and capping agent. Heliyon 6(8):e04636. https://doi.org/10.1016/j.heliyon.2020.e04636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Letchumanan D, Sok SPM, Ibrahim S, Nagoor NH, Arshad NM (2021) Plant-based biosynthesis of copper/copper oxide nanoparticles: an update on their applications in biomedicine, mechanisms, and toxicity. Biomolecules 11(4):564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lee HJ, Song JY, Kim BS (2013) Biological synthesis of copper nanoparticles using Magnolia kobus leaf extract and their antibacterial activity. J Chem Technol Biotechnol 88:1971–1977

    Article  CAS  Google Scholar 

  67. Kulkarni VD, Kulkarni PS (2013) Green synthesis of copper nanoparticles using Ocimum sanctum leaf extract. Int J Chem Stud 1:1–4

    Google Scholar 

  68. Varshney R, Bhadauria S, Gaur M, Pasricha R (2011) Copper nanoparticles synthesis from electroplating industry effluent. Nano Biomed Eng 3:115–119

    Article  CAS  Google Scholar 

  69. Kashyap P, Shirkot P, Das R, Pandey H, Singh D (2023) Biosynthesis and characterization of copper nanoparticles from Stenotrophomonas maltophilia and its effect on plant pathogens and pesticide degradation. J Agric Food Res 13:100654. https://doi.org/10.1016/j.jafr.2023.100654

    Article  CAS  Google Scholar 

  70. Markeb AA, Llimós-Turet J, Ferrer I, Blánquez P, Alonso A, Sánchez A et al (2019) The use of magnetic iron oxide based nanoparticles to improve microalgae harvesting in real wastewater. Water Res 159:490–500. https://doi.org/10.1016/j.watres.2019.05.023

    Article  CAS  Google Scholar 

  71. Nair GM, Sajini T, Mathew B (2021) Advanced green approaches for metal and metal oxide nanoparticles synthesis and their environmental applications. Talanta Open 5:100080. https://doi.org/10.1016/j.talo.2021.100080

    Article  Google Scholar 

  72. Shengmei C et al (2022) Ziziphoraclinopodioides Lam leaf aqueous extract mediated novel green synthesis of iron nanoparticles and its anti-hemolytic anemia potential: A chemobiological study. Arab J Chem 15(3):103561

    Article  Google Scholar 

  73. Batool F, Iqbal MS, Khan SUD et al (2021) Biologically synthesized iron nanoparticles (FeNPs) from Phoenix dactylifera have antibacterial activities. Sci Rep 11:22132. https://doi.org/10.1038/s41598-021-01374-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Khan S, Bibi G, Dilbar S, Iqbal A, Ahmad M, Ali A, Ali I (2022) Biosynthesis and characterization of iron oxide nanoparticles from Mentha spicata and screening its combating potential against Phytophthora infestans. Front Plant Sci 13:1001499

    Article  PubMed  PubMed Central  Google Scholar 

  75. Demissie MG, Sabir FK, Edossa GD, Gonfa BA (2020) Synthesis of zinc oxide nanoparticles using leaf extract of lippiaadoensis (koseret) and evaluation of its antibacterial activity. J Chem 2020:1–9. https://doi.org/10.1155/2020/7459042

    Article  CAS  Google Scholar 

  76. Chaudhuri SK, Malodia L (2017) Biosynthesis of zinc oxide nanoparticles using leaf extract of Calotropis gigantea: characterization and its evaluation on tree seedling growth in nursery stage. Appl Nanosci 7:501–512. https://doi.org/10.1007/s13204-017-0586-7

    Article  CAS  Google Scholar 

  77. Jeyabharathi S, Naveenkumar S, Chandramohan S, Venkateshan N, Gawwad MRA, Elshikh MS, Rasheed RA, Al Farraj DA, Muthukumaran A (2022) Biological synthesis of zinc oxide nanoparticles from the plant extract, Wattakakavolubilis showed anti-microbial and anti-hyperglycemic effects. J King Saud Univ-Sci 34(3):101881. https://doi.org/10.1016/j.jksus.2022.101881

    Article  Google Scholar 

  78. Bamal D, Singh A, Chaudhary G, Kumar M, Singh M, Rani N, Mundlia P, Sehrawat AR (2021) Silver nanoparticles biosynthesis, characterization, antimicrobial activities, applications, cytotoxicity and safety issues: an updated review. Nanomaterials 11(8):2086. https://doi.org/10.3390/nano11082086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Madivoli ES, Kareru PG, Maina EG et al (2019) Biosynthesis of iron nanoparticles using Ageratum conyzoides extracts, their antimicrobial and photocatalytic activity. SN Appl Sci 1:500. https://doi.org/10.1007/s42452-019-0511-7

    Article  CAS  Google Scholar 

  80. Fahmy SA, Preis E, Bakowsky U, Azzazy HME (2020) Platinum nanoparticles: green synthesis and biomedical applications. Molecules 25(21):4981. https://doi.org/10.3390/molecules25214981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Rehman KU, Gouda M, Zaman U, Tahir K, Khan SU, Saeed S, Khojah E, El-Beltagy A, Zaky AA, Naeem M, Khan MI, Khattak NS (2022) Optimization of platinum nanoparticles (PtNPs) synthesis by acid phosphatase mediated eco-benign combined with photocatalytic and bioactivity assessments. Nanomaterials (Basel) 12(7):1079. https://doi.org/10.3390/nano12071079

    Article  CAS  PubMed  Google Scholar 

  82. Eltaweil AS, Fawzy M, Hosny M, Abd El-Monaem EM, Tamer TM, Omer AM (2022) Green synthesis of platinum nanoparticles using Atriplex halimus leaves for potential antimicrobial, antioxidant, and catalytic applications. Arab J Chem 15(1):103517. https://doi.org/10.1016/j.arabjc.2021.103517

    Article  CAS  Google Scholar 

  83. Prabhu N, Gajendran T (2017) Green synthesis of noble metal of platinum nanoparticles from Ocimum sanctum (Tulsi) Plant-extracts. IOSR J Biotechnol Biochem 3:107–112

    Article  Google Scholar 

  84. Pyrzynska K, Sentkowska A (2022) Biosynthesis of selenium nanoparticles using plant extracts. J Nanostruct Chem 12:467–480. https://doi.org/10.1007/s40097-021-00435-4

    Article  CAS  Google Scholar 

  85. Gunti L, Dass RS, Kalagatur NK (2019) Phytofabrication of selenium nanoparticles from Emblica officinalis fruit extract and exploring its biopotential applications: antioxidant, antimicrobial, and biocompatibility. Front Microbiol 10. https://doi.org/10.3389/fmicb.2019.00931

  86. Shankar SS, Rai A, Ahmad A, Sastry M (2004) Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J Colloid Interface Sci 275(2):496–502. https://doi.org/10.1016/j.jcis.2004.03.003

    Article  CAS  PubMed  Google Scholar 

  87. Mogomotsi K, Oluwole A, Lebogang KS, Ramokone G (2019) Characterization and antibacterial activity of biosynthesized silver nanoparticles using the ethanolic extract of Pelargonium sidoides DC. J Nanomater 2019:1–10. https://doi.org/10.1155/2019/3501234

    Article  CAS  Google Scholar 

  88. Rakib-Uz-Zaman SM, Hoque AE, Muntasir MN, Mowna SA, Khanom MG, Jahan SS, Khan K (2022) Biosynthesis of silver nanoparticles from Cymbopogon citratus leaf extract and evaluation of their antimicrobial properties. Challenges 13(1):18. https://doi.org/10.3390/challe13010018

    Article  Google Scholar 

  89. Kumar V, Yadav SK (2009) Plant-mediated synthesis of silver and gold nanoparticles and their applications. J Chem Technol Biotechnol: Int Res Process Environ Clean Technol 84(2):151–157

  90. Khan S, Zahoor M, Khan RS, Ikram M, Islam NU (2023) The impact of silver nanoparticles on the growth of plants: The agriculture applications. Heliyon. https://doi.org/10.1016/j.heliyon.2023.e16928

    Article  PubMed  PubMed Central  Google Scholar 

  91. Malik S, Niazi M, Khan M, Rauff B, Anwar S, Amin F, Hanif R (2023) Cytotoxicity study of gold nanoparticle synthesis using Aloe vera, honey, and Gymnema sylvestre leaf extract. ACS Omega 8(7):6325–6336. https://doi.org/10.1021/acsomega.2c06491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X, Chen C (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18(10):105104. https://doi.org/10.1088/0957-4484/18/10/105104

    Article  CAS  Google Scholar 

  93. Salabat A, Mirhoseini F, Mahdieh M, Saydi H (2015) A novel nanotube-shaped polypyrrole–Pd composite prepared using reverse microemulsion polymerization and its evaluation as an antibacterial agent. New J Chem 39(5):4109–4114. https://doi.org/10.1039/C5NJ00175G

    Article  CAS  Google Scholar 

  94. Muhammad A, Umar A, Birnin-Yauri AU, Sanni HA, Elinge CM, Ige AR, Ambursa MM (2023) Green synthesis of copper nanoparticles using Musa acuminata aqueous extract and their antibacterial activity. Asian J Trop Biotechnol 20(1). https://doi.org/10.5755/j02.ms.32876

  95. Tariq S, Bano A (2023) Role of PGPR and silver nanoparticles on the physiology of Momordica charantia L. irrigated with polluted water comprising high Fe and Mn. Int J Phytoremediation 1–13. https://doi.org/10.1080/15226514.2023.2180288

  96. Tyagi P, Ranjan R (2023) Comparative study of the pharmacological, phytochemical and biotechnological aspects of Tribulus terrestris Linn and Pedalium murex Linn: an overview. Acta Ecol Sin 43(2):223–233

    Article  Google Scholar 

  97. Mohammed ABA, Hegazy AE, Salah A (2023) Novelty of synergistic and cytotoxicity activities of silver nanoparticles produced by Lactobacillus acidophilus. Appl Nanosci 13:633–640. https://doi.org/10.1007/s13204-021-01878-5

    Article  CAS  Google Scholar 

  98. Borah D, Das N, Sarmah P, Ghosh K, Chandel M, Rout J, Bhattacharjee CR (2023) A facile green synthesis route to silver nanoparticles using cyanobacterium Nostoc carneum and its photocatalytic, antibacterial and anticoagulative activity. Mater Today Commun 34:105110

    Article  CAS  Google Scholar 

  99. Mbagwu FO, Auta SH, Bankole MT et al (2023) Biosynthesis and characterization of silver nanoparticles using Bacillus subtilis, Escherichia coli, and leaf extracts of Jatropha and Ocimum species. Int Nano Lett 13:63–73. https://doi.org/10.1007/s40089-022-00387-9

    Article  CAS  Google Scholar 

  100. Prasad TNVKV, Kambala VSR, Naidu R (2013) Phyconanotechnology: synthesis of silver nanoparticles using brown marine algae Cystophora moniliformis and their characterisation. J Appl Phycol 25:177–182. https://doi.org/10.1007/s10811-012-9851-z

    Article  CAS  Google Scholar 

  101. Bai HJ, Yang BS, Chai CJ et al (2011) Green synthesis of silver nanoparticles using Rhodobacter Sphaeroides. World J Microbiol Biotechnol 27:2723–2728. https://doi.org/10.1007/s11274-011-0747-x

    Article  CAS  Google Scholar 

  102. Dabhade AH, Verma RP, Paramasivan B et al (2023) Development of silver nanoparticles and aptamer conjugated biosensor for rapid detection of E coli in a water sample. 3 Biotech 13:244. https://doi.org/10.1007/s13205-023-03663-3

    Article  PubMed  Google Scholar 

  103. Rama Krishna AG, Espenti CS, Rami Reddy YV, Obbu A, Satyanarayana MV (2020) Green synthesis of silver nanoparticles by using sansevieria roxburghiana, their characterization and antibacterial activity. J Inorg Organomet Polym Mater 30(10):4155–4159. https://doi.org/10.1080/23312009.2016.1144296

    Article  CAS  Google Scholar 

  104. Sahoo A, Satapathy KB, Sahoo SK, Panigrahi GK (2023) Microbased biorefinery for gold nanoparticle production: recent advancements, applications and future aspects. Prep Biochem Biotechnol 53(6):579–590. https://doi.org/10.1080/10826068.2022.2122065

    Article  CAS  PubMed  Google Scholar 

  105. Schmitz FRW, Cesca K, Valério A et al (2023) Colorimetric detection of Pseudomonas aeruginosa by aptamer-functionalized gold nanoparticles. Appl Microbiol Biotechnol 107:71–80. https://doi.org/10.1007/s00253-022-12283-5

    Article  CAS  PubMed  Google Scholar 

  106. Chirumamilla P, Dharavath SB, Taduri S (2023) Eco-friendly green synthesis of silver nanoparticles from leaf extract of solanum khasianum: optical properties and biological applications. Appl Biochem Biotechnol 195:353–368. https://doi.org/10.1007/s12010-022-04156-4

    Article  CAS  PubMed  Google Scholar 

  107. Jacob JM, Lens PN, Balakrishnan RM (2016) Microbial synthesis of chalcogenide semiconductor nanoparticles: a review. Microb Biotechnol 9(1):11–21. https://doi.org/10.1111/1751-7915.12297

    Article  CAS  PubMed  Google Scholar 

  108. Shelke DB, Islam NF, Chambhare MR, Sonawane HB, Patowary R, Prasad R, Sarma H (2023) Enhancing secondary metabolites and alleviating environmental stress in crops with mycogenic nanoparticles: a comprehensive review. Biocatalysis Agric Biotechnol 102805. https://doi.org/10.1016/j.bcab.2023.102805

  109. Durán N, Marcato PD, Alves OL et al (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 3:8. https://doi.org/10.1186/1477-3155-3-8

    Article  Google Scholar 

  110. Shinde BH, Inamdar SN, Nalawade SA, Chaudhari SB (2023) A systematic review on antifungal and insecticidal applications of biosynthesized metal nanoparticles. Mater Today: Proc 73:412–417. https://doi.org/10.1016/j.matpr.2022.09.548

    Article  CAS  Google Scholar 

  111. Alani F, Moo-Young M, Anderson W (2012) Biosynthesis of silver nanoparticles by a new strain of Streptomyces sp. compared with Aspergillus fumigatus. World J Microbiol Biotechnol 28:1081–1086. https://doi.org/10.1007/s11274-011-0906-0

    Article  CAS  PubMed  Google Scholar 

  112. Ogunleye GE, Adebayo-Tayo BC, Oyinlola KA (2023) Biological evaluation of extracellular mycosynthesized silver nanoparticles by Trichoderma asperellum. Biometals 36:97–109. https://doi.org/10.1007/s10534-022-00463-9

    Article  CAS  PubMed  Google Scholar 

  113. Shanmugam N, Rajkamal P, Cholan S et al (2014) Biosynthesis of silver nanoparticles from the marine seaweed Sargassum wightii and their antibacterial activity against some human pathogens. Appl Nanosci 4:881–888. https://doi.org/10.1007/s13204-013-0271-4

    Article  CAS  Google Scholar 

  114. Romero N, Visentini FF, Marquez VE, Santiago LG, Castro GR, Gagneten AM (2020) Physiological and morphological responses of green microalgae Chlorella vulgaris to silver nanoparticles. Environ Res 189:109857. https://doi.org/10.1016/j.envres.2020.109857

    Article  CAS  PubMed  Google Scholar 

  115. dos Santos Souza LM, Dibo M, Sarmiento JJ, Seabra AB, Medeiros LP, Lourenço IM, Kobayashi RK, Nakazato G (2022) Biosynthesis of selenium nanoparticles using combinations of plant extracts and their antibacterial activity. Curr Res Green Sustain Chem 1(5):100303. https://doi.org/10.1016/j.crgsc.2022.100303

    Article  CAS  Google Scholar 

  116. Dikshit PK, Kumar J, Das AK, Sadhu S, Sharma S, Singh S, Gupta PK, Kim BS (2021) Green synthesis of metallic nanoparticles: applications and limitations. Catalysts 11(8):902. https://doi.org/10.3390/catal11080902

    Article  CAS  Google Scholar 

  117. Aboyewa JA, Sibuyi NRS, Meyer M, Oguntibeju OO (2021) Green synthesis of metallic nanoparticles using some selected medicinal plants from southern africa and their biological applications. Plants (Basel) 10(9):1929

    Article  CAS  PubMed  Google Scholar 

  118. Singh J, Dutta T, Kim KH et al (2018) ‘Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J Nanobiotechnol 16:84. https://doi.org/10.1186/s12951-018-0408-4

    Article  CAS  Google Scholar 

  119. Jiang Z, Li L, Huang H, He W, Ming W (2022) Progress in laser ablation and biological synthesis processes:“top-down” and “bottom-up” approaches for the green synthesis of Au/Ag nanoparticles. Int J Mol Sci 23(23):14658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Zhang D, Ma XL, Gu Y, Huang H, Zhang GW (2020) Green synthesis of metallic nanoparticles and their potential applications to treat cancer. Front Chem 29(8):799

    Article  Google Scholar 

  121. Chopra H, Bibi S, Singh I, Hasan MM, Khan MS, Yousafi Q, Baig AA, Rahman M, Islam F, Emran TB, Cavalu S (2022) Green metallic nanoparticles: biosynthesis to applications. Front Bioeng Biotechnol 10:548–555

    Article  Google Scholar 

  122. Khan ZU, Khan A, Chen Y, Shah NS, Muhammad N, Khan AU, Tahir K, Khan FU, Murtaza B, Hassan SU, Qaisrani SA (2017) Biomedical applications of green synthesized Nobel metal nanoparticles. J Photochem Photobiol, B 1(173):150–164

    Google Scholar 

  123. Rahman A, Chowdhury MA, Hossain N (2022) Green synthesis of hybrid nanoparticles for biomedical applications: a review. Appl Surf Sci Adv 1(11):100296

    Article  Google Scholar 

  124. Klębowski B, Depciuch J, Parlińska-Wojtan M, Baran J (2018) Applications of noble metal-based nanoparticles in medicine. Int J Mol Sci 19(12):4031

    Article  PubMed  PubMed Central  Google Scholar 

  125. Mujahid MH, Upadhyay TK, Khan F, Pandey P, Park MN, Sharangi AB, Kim B (2022) Metallic and metal oxide-derived nanohybrid as a tool for biomedical applications. Biomed Pharmacother 155:113791

    Article  CAS  PubMed  Google Scholar 

  126. Verma AK, Kumar P (2022) On recent developments in biosynthesis and application of Au and Ag nanoparticles from biological systems. J Nanotechnol 1–19. Article ID 5560244. https://doi.org/10.1155/2022/5560244

  127. Tsai JL (2007) Ideal affect: cultural causes and behavioral consequences. Perspect Psychol Sci 2(3):242–259

    Article  PubMed  Google Scholar 

  128. Ramalingam V (2022) Silver nanoparticles for biomedical applications. In: Nanoparticle Therapeutics. Academic Press, pp 359–375

  129. Salata OV (2004) Applications of nanoparticles in biology and medicine. J Nanobiotechnology 2(1):1–6

    Article  Google Scholar 

  130. Nadeem M, Khan R, Shah N, Bangash IR, Abbasi BH, Hano C, Celli J (2022) A review of microbial mediated iron nanoparticles (IONPs) and its biomedical applications. Nanomaterials 12(1):130

    Article  CAS  Google Scholar 

  131. Agasti SS, Rana S, Park MH, Kim CK, You CC, Rotello VM (2010) Nanoparticles for detection and diagnosis. Adv Drug Deliv Rev 62(3):316–328

    Article  CAS  PubMed  Google Scholar 

  132. Simon S, Sibuyi NRS, Fadaka AO, Meyer S, Josephs J, Onani MO, Madiehe AM (2022) Biomedical applications of plant extract-synthesized silver nanoparticles. Biomedicines 10(11):2792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Manju K, Raj SN, Ranjini HK et al (2023) Nanovaccines to combat drug resistance: the next-generation immunisation. Futur J Pharm Sci 9:64. https://doi.org/10.1186/s43094-023-00515-y

    Article  Google Scholar 

  134. Pandit C, Roy A, Ghotekar S, Khusro A, Islam MN, Emran TB, Bradley DA (2022) Biological agents for synthesis of nanoparticles and their applications. J King Saud Univ-Sci 34(3):101869

    Article  Google Scholar 

  135. Marques Neto LM, Kipnis A, Junqueira-Kipnis AP (2017) Role of metallic nanoparticles in vaccinology: implications for infectious disease vaccine development. Front Immunol 8(8):239

    PubMed  PubMed Central  Google Scholar 

  136. Chandrakala V, Aruna V, Angajala G (2022) Review on metal nanoparticles as nanocarriers: current challenges and perspectives in drug delivery systems. Emergent Mater 5(6):1593–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Yafout M, Ousaid A, Khayati Y, El Otmani IS (2021) Gold nanoparticles as a drug delivery system for standard chemotherapeutics: A new lead for targeted pharmacological cancer treatments. Sci Afr 11:e00685

    CAS  Google Scholar 

  138. Patterson N, Isakov M, Booth T, Büster L, Fischer CE, Olalde I, Mihovilić K (2022) Large-scale migration into Britain during the middle to late bronze age. Nature 601(7894):588–594

    Article  CAS  PubMed  Google Scholar 

  139. Rita A, Amador C, Anagnostopoulos I, Attygalle AD, de Oliveira Araujo IB, Berti E, Bhagat G et al (2022) The 5th edition of the World Health Organization classification of haematolymphoidtumours: lymphoid neoplasms. Leukemia 36(7):1720–1748

    Article  Google Scholar 

  140. Soetaert F, Korangath P, Serantes D, Fiering S, Ivkov R (2020) Cancer therapy with iron oxide nanoparticles: agents of thermal and immune therapies. Adv Drug Deliv Rev 163:65–83

    Article  PubMed  Google Scholar 

  141. Bussiere DE, Xie L, Srinivas H, Shu W, Burke A, Be C, Paulk J (2020) Structural basis of indisulam-mediated RBM39 recruitment to DCAF15 E3 ligase complex. Nat Chem Biol 16(1):15–23

    Article  CAS  PubMed  Google Scholar 

  142. Cordani M, Somoza Á (2019) Targeting autophagy using metallic nanoparticles: a promising strategy for cancer treatment. Cell Mol Life Sci 76(7):1215–1242

    Article  CAS  PubMed  Google Scholar 

  143. Alshameri AW, Owais M (2022) Antibacterial and cytotoxic potency of the plant-mediated synthesis of metallic nanoparticles Ag NPs and ZnO NPs: a review. OpenNano 100077. https://doi.org/10.1016/j.onano.2022.100077

  144. Nguyen DTC, Van Tran T, Nguyen TTT, Nguyen DH, Alhassan M, Lee T (2022) New frontiers of invasive plants for biosynthesis of nanoparticles towards biomedical applications: a review. Sci Total Environ 857(Pt 2):159278. https://doi.org/10.1016/j.scitotenv.2022.159278

    Article  CAS  PubMed  Google Scholar 

  145. Wicki A, Witzigmann D, Balasubramanian V, Huwyler J (2015) Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J Control Release 200:138–157

    Article  CAS  PubMed  Google Scholar 

  146. Ullah A, Lim SI (2022) Plant extract-based synthesis of metallic nanomaterials, their applications, and safety concerns. BiotechnolBioeng 119(9):2273–2304

    CAS  Google Scholar 

  147. Alsaiari NS, Alzahrani FM, Amari A, Osman H, Harharah HN, Elboughdiri N, Tahoon MA (2023) Plant and microbial approaches as green methods for the synthesis of nanomaterials: synthesis, applications, and future perspectives. Molecules 28(1):463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Mukherjee S, Patra CR (2017) Biologically synthesized metal nanoparticles: recent advancement and future perspectives in cancer theranostics. Futur Sci OA 3(3):FSO203

    Article  Google Scholar 

  149. Venkata ALK, Sivaram S, Sajeet M, Sanjay PM, Srilakshman G, Muthuraman MS (2022) Review on terpenoid mediated nanoparticles: significance, mechanism, and biomedical applications. Adv Nat Sci: Nanosci Nanotechnol 13(3):033003

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Faculty of Pharmacy, Integral University, Lucknow, for providing all the necessary facilities related to the present work (Manuscript Communication Number: IU/R&D/2022-MCN0001416).

Author information

Authors and Affiliations

Authors

Contributions

P.K. conceived and designed the study, and wrote the first draft of the manuscript, S.S. carried out the research, B.S. and M.A participated in the analysis and interpretation of data. All authors contributed to and approved the final draft of the manuscript.

Corresponding author

Correspondence to Poonam Kushwaha.

Ethics declarations

Ethics Approval

No human or animal subjects were used in the course of the research for this study.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devi, L., Kushwaha, P., Ansari, T.M. et al. Recent Trends in Biologically Synthesized Metal Nanoparticles and their Biomedical Applications: a Review. Biol Trace Elem Res 202, 3383–3399 (2024). https://doi.org/10.1007/s12011-023-03920-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-023-03920-9

Keywords

Navigation