Skip to main content

Advertisement

Log in

Investigating the Effects of Biogenic Zinc Oxide Nanoparticles Produced Using Papaver somniferum Extract on Oxidative Stress, Cytotoxicity, and the Induction of Apoptosis in the THP-1 Cell Line

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract 

This study investigated the effect of novel zinc oxide nanoparticles (ZnO NPs) biosynthesized employing Papaver somniferum leaf on oxidative stress, necrosis, and apoptosis in the leukemia cancer THP-1 cell. The obtained ZnO was examined using SEM, AFM, and TEM microscopy, which revealed an irregular spherical morphology with a size ranging from 20 to 30 nm, and the UV–vis absorbance revealed a strong absorption peak in the range of 360–370, nm confirming the production of ZnO NPs. THP-1 cells were subjected to an MTT, an EdU proliferation, a lactate dehydrogenase release tests, a reactive oxygen species (ROS) induction experiment, a DAPI staining detection assay, and a flow cytometric analysis for Annexin V to measure the effects of ZnO NPs on cancer cell growth inhibition, apoptosis, and necrosis. Our results show that ZnO NPs inhibit THP-1 line in a concentration-dependent pattern. It was observed that ZnO NPs triggered necrosis (cell death) and apoptosis in the cell line. ZnO NPs massively improved the formation of intracellular ROS, which is crucial in deactivating the development of leukemic cells. In conclusion, ZnO nanoparticles synthesized using Papaver somniferum extract have the ability to inhibit proliferation leukemic cancer cells, making them potential anticancer agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

UV:

Ultraviolet-visible spectroscopy

SEM:

Scanning electron microscopy

FTIR:

Fourier-transform infrared spectroscopy

EDX:

Energy-dispersive X-ray analysis

MTT:

[3-(4.5-Dimethylthiazol-2yl)]-2.5 diphenyl tetrazolium bromide

ROS:

Reactive oxygen species

TEM:

Transmission electron microscopy

TGA:

Thermogravimetric analysis

LDH:

Lactate dehydrogenase

XRD:

X-ray diffraction

Z-P:

Zeta potential

DLS:

Dynamic light scattering

THP-1:

Human leukemia monocytic cell line

ZnO NPs:

Zinc oxide nanoparticles

References

  1. Mohammed MK, Sarusi G, Sakthivel P, Ravi G, Younis U (2021) Improved stability of ambient air-processed methylammonium lead iodide using carbon nanotubes for perovskite solar cells. Mat Res Bull 137:111182

    Article  CAS  Google Scholar 

  2. Faris AH, Hamid KJ, Naji AM, Mohammed MK, Nief OA, Jabir MSJML (2022) Novel Mo-doped WO3/ZnO nanocomposites loaded with polyvinyl alcohol towards efficient visible-light-driven photodegradation of methyl orange. Mat Lett 34:133746

    Google Scholar 

  3. Govindan N, Mohammed MK, Tamilarasu S (2022) Nano-sized plant particles for next generation green-medicine. Mat Lett 309:131301

    Article  CAS  Google Scholar 

  4. Govindan N, Vairaprakasam K, Chinnasamy C, Sivalingam T, Mohammed MK (2020) Green synthesis of Zn-doped Catharanthus Roseus nanoparticles for enhanced anti-diabetic activity. Mat Adv 1(9):3460–3465

    Article  CAS  Google Scholar 

  5. Kadhim MJ, Mohammed MK (2023) Fabrication of efficient triple-cation perovskite solar cells employing ethyl acetate as an environmental-friendly solvent additive. Mat Res Bull 158:112047

    Article  CAS  Google Scholar 

  6. Mohammad MR, Ahmed DS, Mohammed MK (2020) Letters, ZnO/Ag nanoparticle-decorated single-walled carbon nanotubes (SWCNTs) and their properties. Surf Rev Lett 27(03):195

    Article  Google Scholar 

  7. Alyamani AA, Albukhaty S, Aloufi S, AlMalki FA, Al-Karagoly H, Sulaiman GM (2021) Green fabrication of zinc oxide nanoparticles using phlomis leaf extract: characterization and in vitro evaluation of cytotoxicity and antibacterial properties. Molecules 26(20):6140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Khane Y, Benouis K, Albukhaty S, Sulaiman GM, Abomughaid MM, Al Ali A, Aouf D, Fenniche F, Khane S, Chaibi W (2022) Green synthesis of silver nanoparticles using aqueous Citrus limon zest extract: characterization and evaluation of their antioxidant and antimicrobial properties. Nanomaterials 12(12):2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ahmed DS, Mohammed BK, Mohammed MK (2021) K, Long-term stable and hysteresis-free planar perovskite solar cells using green antisolvent strategy. J Mat Sci 56(27):152–152

    Article  Google Scholar 

  10. Mohammed MK, Mohammad M, Jabir MS, Ahmed D. (2020) In Functionalization, characterization, and antibacterial activity of single wall and multi wall carbon nanotubes, IOP Conference Series: Materials Science and Engineering, IOP Publishing: p 012028.

  11. Mohammed MK, Singh S, Al-Mousoi AK, Pandey R, Madan J, Dastan D, Ravi G (2022) Ravi, G, Improving the potential of ethyl acetate green anti-solvent to fabricate efficient and stable perovskite solar cells. RSC Adv 12(50):32611–32618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Moharam MM, El Shazly AN, Anand KV, Rayan DE, Mohammed MK, Rashad MM, Shalan AE (2021) Semiconductors as effective electrodes for dye sensitized solar cell applications. Top Curr Chem 379(3):1–17

    Google Scholar 

  13. Naji AM, Kareem SH, Faris AH, Mohammed MK (2021) Polyaniline polymer-modified ZnO electron transport material for high-performance planar perovskite solar cells. Ceram Int 47(23):33390–33397

    Article  CAS  Google Scholar 

  14. Naji AM, Mohammed IY, Mohammed SH, Mohammed MK, Ahmed DS, Jabir MS, Rheima AM (2022) Photocatalytic degradation of methylene blue dye using F doped ZnO/Polyvinyl alcohol nanocomposites. Mat Lett 322:132473

    Article  Google Scholar 

  15. Singh J, Kumar S, Alok A, Upadhyay SK, Rawat M, Tsang DC, Bolan N, Kim K-H (2019) The potential of green synthesized zinc oxide nanoparticles as nutrient source for plant growth. J Clean Prod 214:1061–1070

    Article  CAS  Google Scholar 

  16. Mirzaei H, Darroudi M (2017) Zinc oxide nanoparticles: biological synthesis and biomedical applications. Ceram Int 43(1):907–914

    Article  CAS  Google Scholar 

  17. Nagaraj G, Mohammed MK, Shekargoftar M, Sasikumar P, Sakthivel P, Ravi G, Dehghanipour M, Akin S, Shalan AE (2021) High-performance perovskite solar cells using the graphene quantum dot–modified SnO2/ZnO photoelectrode. Mat Today Energy 22:100853

    Article  CAS  Google Scholar 

  18. Fan F, Feng Y, Tang P, Li D (2015) Facile synthesis and photocatalytic performance of ZnO nanoparticles self-assembled spherical aggregates. Mat Lett 158:290–294

    Article  CAS  Google Scholar 

  19. Suntako R (2015) Effect of synthesized ZnO nanograins using a precipitation method for the enhanced cushion rubber properties. Mat Lett 158:399–402

    Article  CAS  Google Scholar 

  20. Mohammed MK, Ahmed DS, Mohammad MR (2019) Studying antimicrobial activity of carbon nanotubes decorated with metal-doped ZnO hybrid materials. Mat Res Express 6(5):055404

    Article  CAS  Google Scholar 

  21. Ovais M, Khalil AT, Raza A, Khan MA, Ahmad I, Islam NU, Saravanan M, Ubaid MF, Ali M, Shinwari ZK (2016) Green synthesis of silver nanoparticles via plant extracts: beginning a new era in cancer theranostics. Nanomedicine 12(23):3157–3177

    Article  Google Scholar 

  22. Al Rugaie O, Jabir MS, Mohammed MK, Abbas RH, Ahmed DS, Sulaiman GM, Mohammed SA, Khan RA, Al-Regaiey KA, Alsharidah M (2022) Modification of SWCNTs with hybrid materials ZnO–Ag and ZnO–Au for enhancing bactericidal activity of phagocytic cells against Escherichia coli through NOX2 pathway. Sci Rep 12(1):1–12

    Article  Google Scholar 

  23. Alhujaily M, Albukhaty S, Yusuf M, Mohammed MK, Sulaiman GM, Al-Karagoly H, Alyamani AA, Albaqami J, AlMalki FA (2022) Recent advances in plant-mediated zinc oxide nanoparticles with their significant biomedical properties. Bioengineering 9(10):541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mahmood RI, Kadhim AA, Ibraheem S, Albukhaty S, Mohammed-Salih HS, Abbas RH, Jabir MS, Mohammed MK, Nayef UM, AlMalki FA (2022) Biosynthesis of copper oxide nanoparticles mediated Annona muricata as cytotoxic and apoptosis inducer factor in breast cancer cell lines. Sci Rep 12(1):1–10

    Article  Google Scholar 

  25. Noori AS, Mageed NF, Mohammed MK, Mazhir SN, Ali AH, Jaber NA, Mohammed SH (2022) The histological effect of activated aloe vera extract by microwave plasma on wound healing. Chem Phys Lett 807:140112

    Article  CAS  Google Scholar 

  26. Abdelmigid HM, Morsi MM, Hussien NA, Alyamani AA, Alhuthal NA, Albukhaty S (2022) Green synthesis of phosphorous-containing hydroxyapatite nanoparticles (nHAP) as a novel nano-fertilizer: preliminary assessment on pomegranate (Punica granatum L.). Nanomaterials 12(9):1527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jabir MS, Rashid TM, Nayef UM, Albukhaty S, AlMalki FA, Albaqami J, AlYamani AA, Taqi ZJ, Sulaiman GMJBC (2022) Applications, inhibition of staphylococcus aureus α-hemolysin production using nanocurcumin capped Au@ ZnO nanocompositeBioinorg Chem Appl 2022

  28. Singh J, Dutta T, Kim K-H, Rawat M, Samddar P, Kumar P (2018) ‘Green’synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J Nanobiotechnol 16(1):1–24

    Article  Google Scholar 

  29. Hikita H, Kodama T, Shimizu S, Li W, Shigekawa M, Tanaka S, Hosui A, Miyagi T, Tatsumi T, Kanto T (2012) Bak deficiency inhibits liver carcinogenesis: a causal link between apoptosis and carcinogenesis. J Hepatol 57(1):92–100

    Article  CAS  PubMed  Google Scholar 

  30. Ahamed M, Akhtar MJ, Siddiqui MA, Ahmad J, Musarrat J, Al-Khedhairy AA, AlSalhi MS, Alrokayan SA (2011) Oxidative stress mediated apoptosis induced by nickel ferrite nanoparticles in cultured A549 cells. Toxicology 283(2–3):101–108

    Article  CAS  PubMed  Google Scholar 

  31. Zhang S, Li T, Zhang L, Wang X, Dong H, Li L, Fu D, Li Y, Zi X, Liu H-M (2017) A novel chalcone derivative S17 induces apoptosis through ROS dependent DR5 up-regulation in gastric cancer cells. Sci Rep 7(1):1–13

    Google Scholar 

  32. Xu B, Xu M, Tian Y, Yu Q, Zhao Y, Chen X, Mi P, Cao H, Zhang B, Song G (2017) Matrine induces RIP3-dependent necroptosis in cholangiocarcinoma cells. Cell Death Discov 3(1):1–11

    Article  Google Scholar 

  33. Manda G, Isvoranu G, Comanescu MV, Manea A, Butuner BD, Korkmaz KS (2015) The redox biology network in cancer pathophysiology and therapeutics. Redox Biol 5:347–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen H, Li Y, Zhu Y, Wu L, Meng J, Lin N, Yang D, Li M, Ding W, Tong XJM (2017) Advanced glycation end products promote ChREBP expression and cell proliferation in liver cancer cells by increasing reactive oxygen species. Medicine 96(33)

  35. Al-Mousoi AK, Mohammed MK, Khalaf HA (2016) Preparing and characterization of indium arsenide (InAs) thin films by chemical spray pyrolysis (CSP) technique. Optik 127(15):5834–5840

    Article  CAS  Google Scholar 

  36. Mohammed MK, Al-Mousoi KA, Majeed MS, Singh S, Kumar A, Pandey R, Madan J, Ahmed DS, Dastan D (2022) Fuels, Stable hole-transporting material-free perovskite solar cells with efficiency exceeding 14% via the introduction of a malonic acid additive for a perovskite precursor. Energy Fuels 36(21):13187–13194

    Article  CAS  Google Scholar 

  37. Al-Musawi S, Albukhaty S, Al-Karagoly H, Sulaiman GM, Jabir MS, Naderi-Manesh H (2020) Nanotechnology, dextran-coated superparamagnetic nanoparticles modified with folate for targeted drug delivery of camptothecin. Adv Nat Sci: Nanosci Nanotechnol 11(4):045009

    CAS  Google Scholar 

  38. Mohammed MK, Al-Mousoi AK, Khalaf HA (2016) Deposition of multi-layer graphene (MLG) film on glass slide by flame synthesis technique. Optik 127(20):9848–9852

    Article  CAS  Google Scholar 

  39. Nagajyothi P, Pandurangan M, Sreekanth T (2016) Shim, J 2016 In vitro anticancer potential of BaCO3 nanoparticles synthesized via green route. J Photochem Photobiol B: Biol 156:29–34

    Article  CAS  Google Scholar 

  40. Al-Ziaydi AG, Al-Shammari AM, Hamzah MI, Kadhim HS, Jabir MS (2020) Newcastle disease virus suppress glycolysis pathway and induce breast cancer cells death. Virusdisease 31(3):341–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jabir MS, Nayef UM, Abdulkadhim WK, Taqi ZJ, Sulaiman GM, Sahib UI, Al-Shammari AM, Wu Y-J, El-Shazly M, Su C-C (2021) Fe3O4 nanoparticles capped with PEG induce apoptosis in breast cancer AMJ13 cells via mitochondrial damage and reduction of NF-κB translocation. J Inorg Organomet Polym Mat 31(3):1241–1259

    Article  CAS  Google Scholar 

  42. Al-Shammari AM, Al-Saadi H, Al-Shammari SM, Jabir MS. (2020) In Galangin enhances gold nanoparticles as anti-tumor agents against ovarian cancer cells, AIP Conference Proceedings, AIP Publishing LLC: p 020206.

  43. Pandurangan M, Kim DH (2015) ZnO nanoparticles augment ALT, AST, ALP and LDH expressions in C2C12 cells. Saudi J Biolog Sci 22(6):679–684

    Article  CAS  Google Scholar 

  44. Yang H, Liu C, Yang D, Zhang H, Xi Z (2019) Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. J Appl Toxicol 29(1):69–78

    Article  Google Scholar 

  45. Kim YH, Fazlollahi F, Kennedy IM, Yacobi NR, Hamm-Alvarez SF, Borok Z, Kim K-J, Crandall ED (2010) Alveolar epithelial cell injury due to zinc oxide nanoparticle exposure. Am J Respir Crit Care Med 182(11):1398–1409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Perera W, Dissanayake RK, Ranatunga U, Hettiarachchi N, Perera K, Unagolla JM, De Silva R, Pahalagedara LR (2020) Curcumin loaded zinc oxide nanoparticles for activity-enhanced antibacterial and anticancer applications. RSC Adv 10(51):30785–30795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang Y, Zhang Y, Guo Y, Lu J, Veeraraghavan VP, Mohan SK, Wang C, Yu X (2019) Synthesis of Zinc oxide nanoparticles from Marsdenia tenacissima inhibits the cell proliferation and induces apoptosis in laryngeal cancer cells (Hep-2). J Photochem Photobiol B: Biol 201:111624

    Article  CAS  Google Scholar 

  48. Wahab R, Kaushik NK, Verma AK, Mishra A, Hwang I, Yang Y-B, Shin H-S, Kim Y-S (2011) Fabrication and growth mechanism of ZnO nanostructures and their cytotoxic effect on human brain tumor U87, cervical cancer HeLa, and normal HEK cells. JBIC J Biol Inorg Chem 16(3):431–442

    Article  CAS  PubMed  Google Scholar 

  49. Goorabjavari SVM, Golmohamadi F, Haririmonfared S, Ahmadi H, Golisani S, Yari H, Hasan A, Edis Z, Ale-Ebrahim M, Sharifi M (2021) Thermodynamic and anticancer properties of inorganic zinc oxide nanoparticles synthesized through co-precipitation method. J Mol Liq 330:115

    Article  Google Scholar 

  50. Namvar F, Rahman HS, Mohamad R, Azizi S, Tahir PM, Chartrand MS, Yeap SK (2015) Cytotoxic effects of biosynthesized zinc oxide nanoparticles on murine cell lines. Evid Based Complement Alternat Med 2015

  51. Lorenzo Y, Costa S, Collins AR, Azqueta A (2013) The comet assay, DNA damage, DNA repair and cytotoxicity: hedgehogs are not always dead. Mutagenesis 28(4):427–432

    Article  CAS  PubMed  Google Scholar 

  52. Sharma V, Shukla RK, Saxena N, Parmar D, Das M, Dhawan A (2009) DNA damaging potential of zinc oxide nanoparticles in human epidermal cells. Toxicol lett 185(3):211–218

    Article  CAS  PubMed  Google Scholar 

  53. Kukla SP, Chelomin VP, Mazur AA, Slobodskova VV (2022) Zinc oxide nanoparticles induce DNA damage in sand dollar Scaphechinus mirabilis sperm. Toxics 10(7):348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Panduri V, Weitzman SA, Chandel NS, Kamp DW (2004) Mitochondrial-derived free radicals mediate asbestos-induced alveolar epithelial cell apoptosis. Am J Physiology-Lung Cell Mol Physiol 286(6):L1220–L1227

    Article  CAS  Google Scholar 

  55. Wahab R, Dwivedi S, Umar A, Singh S, Hwang I, Shin H-S, Musarrat J, Al-Khedhairy AA, Kim Y-S (2013) ZnO nanoparticles induce oxidative stress in Cloudman S91 melanoma cancer cells. J Biomed Nanotechnol 9(3):441–449

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and methodology: A.A.K.; formal analysis: N.R.A. and H.H.K.; investigation and data curation: S.A., A.M.N., and M.K.A.M.; validation S.S.H.; visualization, original draft preparation: H.A.; writing—review and editing: M.S.J.; supervision: A.S.

Corresponding author

Correspondence to Mustafa K. A. Mohammed.

Ethics declarations

Competing interests

The authors declare no competing interests.

Institutional Review Board

Not applicable.

Informed Consent

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadhim, A.A., Abbas, N.R., Kadhum, H.H. et al. Investigating the Effects of Biogenic Zinc Oxide Nanoparticles Produced Using Papaver somniferum Extract on Oxidative Stress, Cytotoxicity, and the Induction of Apoptosis in the THP-1 Cell Line. Biol Trace Elem Res 201, 4697–4709 (2023). https://doi.org/10.1007/s12011-023-03574-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-023-03574-7

Keywords

Navigation