Skip to main content
Log in

Betaine Ameliorates Depressive-Like Behaviors in Zinc Oxide Nanoparticles Exposed Mice

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The aim of the current study was to determine protective effects of betaine on depressive-like behaviors in zinc oxide nanoparticles (ZnO NPs) exposed mice. Forty male mice randomly allocated into four experimental groups. Group 1 kept as control and groups 2–4 received oral administration of betaine (30 mg/kg), ZnO NPs (600 mg/kg), and ZnO NPs (600 mg/kg) 1 h after pre-administration of betaine (30 mg/kg) for 7 days, respectively. Then, forced swimming test (FST), tail suspension test (TST), open field test (OFT), and rotarod tests were done. Furthermore, serum malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GPx), and total antioxidant capacity (TAC) levels were determined. Hippocampal tissue samples were collected for histopathological assessment. According to the results, treatment with ZnO NPs significantly increased immobility time in the FST and TST (P<0.05). Betaine significantly decreased immobility time in the FST and TST (P<0.05). Pretreatment with betaine significantly decreased ZnO NPs-induced alterations in the FST and TST (P<0.05). The duration of staying on the rotarod and the numbers of crossings in the OFT significantly decreased in the mice that received ZnO NPs (P<0.05). These results were significantly improved in betaine+ZnO NPs treated mice as compared to the ZnO NPs group (P<0.05). Treatment with ZnO NPs significantly increased serum MDA level while decreased SOD and GPx compared to the control group (P<0.05). These changes were effectively ameliorated by pretreatment with betaine compared to the ZnO NPs group (P<0.05). No significant effect on serum TAC level was observed in all groups (P˃0.05). Administration of ZnO NPs decreased the thickness of hippocampus and pyramidal neurons in the hippocampal dentate gyrus (DG) and CA1 regions were sparsely arranged. Pretreatment with betaine caused an improvement in the histological features of the hippocampus when compared with ZnO NPs-treated mice. Taken together, these results suggest that betaine has protective role against ZnO NPs-induced toxicity in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yaqub A, Faheem I, Anjum KM, Ditta SA, Yousaf MZ, Tanvir F, Raza C (2020) Neurotoxicity of ZnO nanoparticles and associated motor function deficits in mice. Appl Nanosci 10(1):177–185

    Article  CAS  Google Scholar 

  2. Ansar S, Abudawood M, Hamed SS, Aleem MM (2017) Exposure to zinc oxide nanoparticles induces neurotoxicity and proinflammatory response: amelioration by hesperidin. Biol Trace Elem Res 175(2):360–366

    Article  CAS  PubMed  Google Scholar 

  3. Jarosz M, Olbert M, Wyszogrodzka G, Młyniec K, Librowski T (2017) Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-κB signaling. Inflammopharmacology 25(1):11–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Doane TL, Burda C (2012) The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy. Chem Soc Rev 41(7):2885–2911

    Article  CAS  PubMed  Google Scholar 

  5. Tian L, Lin B, Wu L, Li K, Liu H, Yan J, Liu X, Xi Z (2015) Neurotoxicity induced by zinc oxide nanoparticles: age-related differences and interaction. Sci Rep 5:16117. https://doi.org/10.1038/srep16117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yang Z, Liu ZW, Allaker RP, Reip P, Oxford J, Ahmad Z, Ren G (2010) A review of nanoparticle functionality and toxicity on the central nervous system. J R Soc Interface 7:S411–S422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Vandebriel RJ, De Jong WH (2012) A review of mammalian toxicity of ZnO nanoparticles. Nanotechnol Sci Appl 5:61–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Xiaoli F, Junrong W, Xuan L, Yanli Z, Limin W, Jia L, Longquan S (2017) Prenatal exposure to nanosized zinc oxide in rats: neurotoxicity and postnatal impaired learning and memory ability. Nanomedicine 12(7):777–795

    Article  PubMed  CAS  Google Scholar 

  9. Attia H, Nounou H, Shalaby M (2018) Zinc oxide nanoparticles induced oxidative DNA damage, inflammation and apoptosis in rat’s brain after oral exposure. Toxics 6(2):29. https://doi.org/10.3390/toxics6020029

    Article  CAS  PubMed Central  Google Scholar 

  10. Okada Y, Tachibana K, Yanagita S, Takeda K (2013) Prenatal exposure to zinc oxide particles alters monoaminergic neurotransmitter levels in the brain of mouse offspring. J Toxicol Sci 38(3):363–370

    Article  CAS  PubMed  Google Scholar 

  11. Alimohammadi S, Hassanpour S, Moharramnejad S (2019a) Effect of maternal exposure to zinc oxide nanoparticles on reflexive motor behaviors in mice offspring. Int J Pept Res Ther 25(3):1049–1056

    Article  CAS  Google Scholar 

  12. Feng X, Chen A, Zhang Y, Wang J, Shao L, Wei L (2015) Central nervous system toxicity of metallic nanoparticles. Int J Nanomedicine 10:4321–4340

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Alimohammadi S, Hosseini MS, Behbood L (2019b) Prenatal exposure to zinc oxide nanoparticles can induce depressive-like behaviors in mice offspring. Int J Pept Res Ther 25(1):401–409

    Article  CAS  Google Scholar 

  14. Kim DH, Sung B, Kang YJ, Jang JY, Hwang SY, Lee Y, Kim M, Im E, Yoon JH, Kim CM, Chung HY (2014) Anti-inflammatory effects of betaine on AOM/DSS-induced colon tumorigenesis in ICR male mice. Int J Oncol 45(3):1250–1256

    Article  CAS  PubMed  Google Scholar 

  15. Kim SJ, Lee L, Kim JH, Lee TH, Shim I (2013) Antidepressant-like effects of lycii radicis cortex and betaine in the forced swimming test in rats. Biomol Ther 21(1):79–83

    Article  Google Scholar 

  16. Knight LS, Piibe Q, Lambie I, Perkins C, Yancey PH (2017) Betaine in the brain: characterization of betaine uptake, its influence on other osmolytes and its potential role in neuroprotection from osmotic stress. Neurochem Res 42(12):3490–3503

    Article  CAS  PubMed  Google Scholar 

  17. Mijailovic N, Selakovic D, Joksimovic J, Mihailovic V, Katanic J, Jakovljevic V, Nikolic T, Bolevich S, Zivkovic V, Pantic M, Rosic G (2019) The anxiolytic effects of atorvastatin and simvastatin on dietary-induced increase in homocysteine levels in rats. Mol Cell Biochem 452(1):199–217

    Article  CAS  PubMed  Google Scholar 

  18. Bhatia P, Singh N (2015) Homocysteine excess: delineating the possible mechanism of neurotoxicity and depression. Fundam Clin Pharmacol 29(6):522–528

    Article  CAS  PubMed  Google Scholar 

  19. Kumar M, Modi M, Sandhir R (2017) Hydrogen sulfide attenuates homocysteine-induced cognitive deficits and neurochemical alterations by improving endogenous hydrogen sulfide levels. Biofactors 43(3):434–450

    Article  CAS  PubMed  Google Scholar 

  20. Kunisawa K, Kido K, Nakashima N, Matsukura T, Nabeshima T, Hiramatsu M (2017) Betaine attenuates memory impairment after water-immersion restraint stress and is regulated by the GABAergic neuronal system in the hippocampus. Eur J Pharmacol 796:122–130

    Article  CAS  PubMed  Google Scholar 

  21. Lin JC, Lee MY, Chan MH, Chen YC, Chen HH (2016) Betaine enhances antidepressant-like, but blocks psychotomimetic effects of ketamine in mice. Psychopharmacology 233(17):3223–3235

    Article  CAS  PubMed  Google Scholar 

  22. Ohnishi T, Balan S, Toyoshima M, Maekawa M, Ohba H, Watanabe A, Iwayama Y, Fujita Y, Tan Y, Hisano Y, Shimamoto-Mitsuyama C (2019) Investigation of betaine as a novel psychotherapeutic for schizophrenia. EBioMedicine 45:432–446

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hassanpour S, Rezaei H, Razavi SM (2020) Anti-nociceptive and antioxidant activity of betaine on formalin-and writhing tests induced pain in mice. Behav Brain Res 390:112699

    Article  CAS  PubMed  Google Scholar 

  24. Zimmermann M (1983) Ethical guidelines for investigations of experimental pain in conscious animals. Pain 16(2):109–110

    Article  PubMed  Google Scholar 

  25. Zahra J, Iqbal S, Zahra K, Javed Z, Shad MA, Akbar A, Ashiq MN, Iqbal F (2017) Effect of variable doses of zinc oxide nanoparticles on male albino mice behavior. Neurochem Res 42(2):439–445

    Article  CAS  PubMed  Google Scholar 

  26. Nasehi M, Mohammadi-Mahdiabadi-Hasani MH, Ebrahimi-Ghiri M, Zarrindast MR (2019) Additive interaction between scopolamine and nitric oxide agents on immobility in the forced swim test but not exploratory activity in the hole-board. Psychopharmacology 236(11):3353–3362

    Article  CAS  PubMed  Google Scholar 

  27. Cryan JF, Mombereau C, Vassout A (2005) The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice. Neurosci Biobehav Rev 29(4-5):571–625

    Article  CAS  PubMed  Google Scholar 

  28. Steru L, Chermat R, Thierry B, Simon P (1985) The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology 85(3):367–370

    Article  CAS  PubMed  Google Scholar 

  29. Donato F, de Gomes MG, Goes AT, Borges Filho C, Del Fabbro L, Antunes MS, Souza LC, Boeira SP, Jesse CR (2014) Hesperidin exerts antidepressant-like effects in acute and chronic treatments in mice: possible role of L-arginine-NO-cGMP pathway and BDNF levels. Brain Res Bull 104:19–26

    Article  CAS  PubMed  Google Scholar 

  30. Jürgensen S, DalBó S, Angers P, Santos ARS, Ribeiro-do-Valle RM (2005) Involvement of 5HT2 receptors in the antinociceptive effect of Uncaria tomentosa. Pharmacol Biochem Behav 8:466–477

    Article  CAS  Google Scholar 

  31. Sayeli V, Nadipelly J, Kadhirvelu P, Cheriyan BV, Shanmugasundaram J, Subramanian V (2019) Antinociceptive effect of flavonol and a few structurally related dimethoxy flavonols in mice. Inflammopharmacol 1–13

  32. Allahmoradi M, Alimohammadi S, Cheraghi H (2019) Protective effect of Cynara scolymus L. on blood biochemical parameters and liver histopathological changes in phenylhydrazine-induced hemolytic anemia in rats. Pharm. Biomed Res 5(4):53–62

    CAS  Google Scholar 

  33. Mohammadali S, Heshami N, Komaki A, Tayebinia H, Abbasi Oshaghi E, Karimi J, Hashemnia M, Khodadadi I (2020) Dill tablet and Ocimum basilicum aqueous extract: promising therapeutic agents for improving cognitive deficit in hypercholesterolemic rats. J Food Biochem 44(12):e13485

    Article  CAS  PubMed  Google Scholar 

  34. Wen S, Li Y, Shen X, Wang Z, Zhang K, Zhang J, Mei X (2021) Protective effects of zinc on spinal cord injury. J Mol Neurosci 23:1–8. https://doi.org/10.1007/s12031-021-01859-x

    Article  CAS  Google Scholar 

  35. Shamohammadi M, Pooyanmehr M, Maleki A, Alimohammadi S (2021) Evaluation of protective and immunomodulatory effects of hydroalcoholic extract of Scrophularia striata on silver nanoparticle-induced toxicity in male rats. Arch. Adv Biosci 12(1):7–17. https://doi.org/10.22037/aab.v12i1.32832

    Article  Google Scholar 

  36. Kalpana VN, Devi Rajeswari V (2018) A review on green synthesis, biomedical applications, and toxicity studies of ZnO NPs. Bioinorg Chem Appl 2018:1–12. https://doi.org/10.1155/2018/3569758

    Article  CAS  Google Scholar 

  37. Wang Z, Zhang C, Huang F, Liu X, Wang Z, Yan B (2021) Breakthrough of ZrO2 nanoparticles into fetal brains depends on developmental stage of maternal placental barrier and fetal blood-brain-barrier. J Hazard Mater 402:123563. https://doi.org/10.1016/j.jhazmat.2020.123563

    Article  CAS  PubMed  Google Scholar 

  38. Choi J, Kim H, Kim P, Jo E, Kim HM, Lee MY, Jin SM, Park K (2015) Toxicity of zinc oxide nanoparticles in rats treated by two different routes: single intravenous injection and single oral administration. J Toxicol Environ Health Part A 78(4):226–243

    Article  CAS  Google Scholar 

  39. Liu WC, Guo Y, An LL, Zhao ZH (2021) Protective effects of dietary betaine on intestinal barrier function and cecal microbial community in indigenous broiler chickens exposed to high temperature environment. Environ Sci Pollut Res 28:10860–10871

    Article  CAS  Google Scholar 

  40. Khodadadeh A, Hassanpour S, Akbari G (2020) Effects of hesperidin during pregnancy on antidepressant-like behaviour in postpartum mice. Iran J Vet Med 14(3):261–270

    Google Scholar 

  41. Haramipour P, Asghari A, Hassanpour S, Jahandideh A (2021) Anti-depressant effect of betaine mediates via nitrergic and serotoninergic systems in ovariectomized mice. Arch Razi Inst 76(5):1097–1107

    Google Scholar 

  42. de Souza JM, de Oliveira MB, Guimarães AT, de Lima Rodrigues AS, Chagas TQ, Rocha TL, Malafaia G (2018) Zinc oxide nanoparticles in predicted environmentally relevant concentrations leading to behavioral impairments in male Swiss mice. Sci Total Environ 613:653–662

    Article  PubMed  CAS  Google Scholar 

  43. Han D, Tian Y, Zhang T, Ren G, Yang Z (2011) Nano-zinc oxide damages spatial cognition capability via over-enhanced long-term potentiation in hippocampus of Wistar rats. Int J Nanomedicine 6:1453–1461

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Xie Y, Wang Y, Zhang T, Ren G, Yang Z (2012) Effects of nanoparticle zinc oxide on spatial cognition and synaptic plasticity in mice with depressive-like behaviors. J Biomed Sci 19:14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhao J, Xu L, Zhang T, Ren G, Yang Z (2009) Influences of nanoparticle zinc oxide on acutely isolated rat hippocampal CA3 pyramidal neurons. Neurotoxicology 30(2):220–230

    Article  CAS  PubMed  Google Scholar 

  46. Zhao J, Yao Y, Liu S, Zhang T, Ren G, Yang Z (2012) Involvement of reactive oxygen species and high-voltage-activated calcium currents in nanoparticle zinc oxide-induced cytotoxicity in vitro. J Nanopart Res 14(11):1238

    Article  CAS  Google Scholar 

  47. Miwa M, Tsuboi M, Noguchi Y, Enokishima A, Nabeshima T, Hiramatsu M (2011) Effects of betaine on lipopolysaccharide-induced memory impairment in mice and the involvement of GABA transporter 2. J Neuroinflammation 8:153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kanbak G, Arslan OC, Dokumacioglu A, Kartkaya K, Inal ME (2008) Effects of chronic ethanol consumption on brain synaptosomes and protective role of betaine. Neurochem Res 33:539–544

    Article  CAS  PubMed  Google Scholar 

  49. Zhao G, He F, Wu C, Li P, Li N, Deng J, Zhu G, Ren W, Peng Y (2018) Betaine in inflammation: mechanistic aspects and applications. Front Immunol 9:1070. https://doi.org/10.3389/fimmu.2018.01070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Alirezaei M, Jelodar G, Ghayemi Z (2012) Antioxidant defense of betaine against oxidative stress induced by ethanol in the rat testes. Int J Pept Res Ther 18:239–247

    Article  CAS  Google Scholar 

  51. Jelodar G, Javid Z, Sahraian A, Jelodar S (2018) Saffron improved depression and reduced homocysteine level in patients with major depression: a randomized, double-blind study. Avicenna J Phytomed 8(1):43–50

    PubMed  PubMed Central  Google Scholar 

  52. Di Pierro F, Orsi R, Settembre R (2015) Role of betaine in improving the antidepressant effect of S-adenosyl-methionine in patients with mild-to-moderate depression. J Multidiscip Healthc 8:39–45

    Article  PubMed  PubMed Central  Google Scholar 

  53. Alirezaei M, Jelodar G, Ghayemi Z, Khordad Mehr M (2014) Antioxidant and methyl donor effects of betaine versus ethanol-induced oxidative stress in the rat liver. Comp Clin Pathol 23:161–168

    Article  CAS  Google Scholar 

  54. Ganesan B, Buddhan S, Anandan R, Sivakumar R, AnbinEzhilan R (2010) Antioxidant defense of betaine against isoprenaline-induced myocardial infarction in rats. Mol Biol Rep 37(3):1319–1327

    Article  CAS  PubMed  Google Scholar 

  55. Alirezaei M, Jelodar G, Niknam P, Ghayemi Z, Nazifi S (2011) Betaine prevents ethanol-induced oxidative stress and reduces total homocysteine in the rat cerebellum. J Physiol Biochem 67:605–612

    Article  CAS  PubMed  Google Scholar 

  56. Ricceri L, De Filippis B, Fuso A, Laviola G (2011) Cholinergic hypofunction in MeCP2-308 mice: beneficial neurobehavioural effects of neonatal choline supplementation. Behav Brain Res 221(2):623–629

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by a grant from the Research Council of the Faculty of Veterinary Medicine, Razi University, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahin Hassanpour.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeyhoonabadi, M., Alimoahmmadi, S., Hassanpour, S. et al. Betaine Ameliorates Depressive-Like Behaviors in Zinc Oxide Nanoparticles Exposed Mice. Biol Trace Elem Res 200, 4771–4781 (2022). https://doi.org/10.1007/s12011-021-03068-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-03068-4

Keywords

Navigation