Skip to main content
Log in

Neurotoxicity of ZnO nanoparticles and associated motor function deficits in mice

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

Nano-sized zinc is extensively used by various industries and exposure of humans to these nanoparticles is increasing by the day. Mounting evidence suggests that health hazards are induced by metallic nanoparticles. However, at present, there is insufficient information concerning the impairment of motor functions due to exposure to metallic nanoparticles, particularly zinc oxide (ZnO) nanoparticles. The present study evaluates the toxic effects of ZnO nanoparticles in Swiss albino mice. Motor functions impairments were monitored using beam balance, and pole and footprint tests. Results showed that ZnO nanoparticles cause deficits in normal motor functions. Histopathological investigations revealed significantly (p < 0.01) increased motor cortex nuclear size probably resulting from neuroinflammation/neuronal damage. Overall, it is concluded that ZnO nanoparticles induce neurotoxicity resulting in motor function impairments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Akakuru O, Louis H, Oyebanji O, Ita B, Amos P (2018) Utility of nanomedicine for cancer treatment. J Nanomed Nanotechnol 9:481. https://doi.org/10.4172/2157-7439.1000481(Page 2 of 6 J Nanomed Nanotechnol, an open access journal ISSN: 2157-7439 Volume 9• Issue 1• 1000481 cytotoxicity which destroys healthy cells in addition to tumor cells. Chemotherapeutics uses NPs as drug carriers which deliver medication directly to tumors and spare the healthy tissues. These nanocarriers)

    Article  Google Scholar 

  • Albanese A, Tang PS, Chan WC (2012) The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 14:1–16

    CAS  Google Scholar 

  • Attia H, Nounou H, Shalaby M (2018) Zinc oxide nanoparticles induced oxidative DNA damage, inflammation and apoptosis in rat’s brain after oral exposure. Toxics 6:29

    Google Scholar 

  • Baky N, Faddah L, Al-Rasheed N, Fatani A (2013) Induction of inflammation, DNA damage and apoptosis in rat heart after oral exposure to zinc oxide nanoparticles and the cardioprotective role of α-lipoic acid and vitamin E. Drug research 63:228–236

    CAS  Google Scholar 

  • Brayner R, Ferrari-Iliou R, Brivois N, Djediat S, Benedetti MF, Fiévet F (2006) Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett 6:866–870

    CAS  Google Scholar 

  • Brooking J, Davis S, Illum L (2001) Transport of nanoparticles across the rat nasal mucosa. J Drug Targeting 9:267–279

    CAS  Google Scholar 

  • Brooks SP, Dunnett SB (2009) Tests to assess motor phenotype in mice: a user’s guide. Nat Rev Neurosci 10:519

    CAS  Google Scholar 

  • Brunner TJ et al (2006) In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ Sci Technol 40:4374–4381

    CAS  Google Scholar 

  • Chaturvedi S, Dave PN (2018) Nanomaterials: environmental, human health risk. Handbook of nanomaterials for industrial applications. Elsevier, Amsterdam, pp 1055–1062

    Google Scholar 

  • Choi J et al (2015) Toxicity of zinc oxide nanoparticles in rats treated by two different routes: single intravenous injection and single oral administration. J Toxicol Environ Health Part A 78:226–243

    CAS  Google Scholar 

  • Dasgupta N, Ranjan S (2018) Nanotechnology in food sector. An introduction to food grade nanoemulsions. Springer, New York, pp 1–18

    Google Scholar 

  • De Jong WH, Borm PJ (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomed 3:133

    Google Scholar 

  • Deng X, Luan Q, Chen W, Wang Y, Wu M, Zhang H, Jiao Z (2009) Nanosized zinc oxide particles induce neural stem cell apoptosis. Nanotechnology 20:115101

    Google Scholar 

  • Esmaeillou M, Moharamnejad M, Hsankhani R, Tehrani AA, Maadi H (2013) Toxicity of ZnO nanoparticles in healthy adult mice. Environ Toxicol Pharmacol 35:67–71

    CAS  Google Scholar 

  • Feng X, Chen A, Zhang Y, Wang J, Shao L, Wei L (2015) Central nervous system toxicity of metallic nanoparticles. Int J Nanomed 10:4321

    CAS  Google Scholar 

  • Fosmire GJ (1990) Zinc toxicity. Am J Clin Nutr 51:225–227

    CAS  Google Scholar 

  • Groneberg DA, Giersig M, Welte T, Pison U (2006) Nanoparticle-based diagnosis and therapy. Curr Drug Targets 7:643–648

    CAS  Google Scholar 

  • Guan R, Kang T, Lu F, Zhang Z, Shen H, Liu M (2012) Cytotoxicity, oxidative stress, and genotoxicity in human hepatocyte and embryonic kidney cells exposed to ZnO nanoparticles. Nanoscale Res Lett 7:602

    Google Scholar 

  • Han D, Tian Y, Zhang T, Ren G, Yang Z (2011) Nano-zinc oxide damages spatial cognition capability via over-enhanced long-term potentiation in hippocampus of Wistar rats. Int J Nanomed 6:1453

    CAS  Google Scholar 

  • Hänsch R, Mendel RR (2009) Physiological functions of mineral micronutrients (cu, Zn, Mn, Fe, Ni, Mo, B, cl). Curr Opin Plant Biol 12:259–266

    Google Scholar 

  • Heinlaan M, Ivask A, Blinova I, Dubourguier H-C, Kahru A (2008) Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71:1308–1316

    CAS  Google Scholar 

  • Jachak AC, Creighton M, Qiu Y, Kane AB, Hurt RH (2012) Biological interactions and safety of graphene materials. MRS Bull 37:1307–1313

    CAS  Google Scholar 

  • Jeng HA, Swanson J (2006) Toxicity of metal oxide nanoparticles in mammalian cells. J Environ Sci Health Part A 41:2699–2711

    CAS  Google Scholar 

  • Karbowski M, Youle R (2003) Dynamics of mitochondrial morphology in healthy cells and during apoptosis. Cell Death Differ 10:870

    CAS  Google Scholar 

  • Karmakar A, Zhang Q, Zhang Y (2014) Neurotoxicity of nanoscale materials. J Food Drug Anal 22:147–160

    CAS  Google Scholar 

  • Kukic I, Kelleher SL, Kiselyov K (2014) Zinc efflux through lysosomal exocytosis prevents zinc-induced toxicity. J Cell Sci 127:3094–4103

    CAS  Google Scholar 

  • Kulvietis V, Zalgeviciene V, Didziapetriene J, Rotomskis R (2011) Transport of nanoparticles through the placental barrier. Tohoku J Exp Med 225:225–234

    CAS  Google Scholar 

  • Kvietys PR, Granger DN (2012) Role of reactive oxygen and nitrogen species in the vascular responses to inflammation. Free Radical Biol Med 52:556–592

    CAS  Google Scholar 

  • Lanone S, Boczkowski J (2006) Biomedical applications and potential health risks of nanomaterials: molecular mechanisms. Curr Mol Med 6:651–663

    CAS  Google Scholar 

  • Li X-b et al (2009) Glia activation induced by peripheral administration of aluminum oxide nanoparticles in rat brains. Nanomed Nanotechnol Biol Med 5:473–479

    CAS  Google Scholar 

  • Lockman PR, Koziara JM, Mumper RJ, Allen DD (2004) Nanoparticle surface charges alter blood–brain barrier integrity and permeability. J Drug Target 12:635–641

    CAS  Google Scholar 

  • Maughan RJ (1999) Role of micronutrients in sport and physical activity. Br Med Bull 55:683–690

    CAS  Google Scholar 

  • Migliore L, Uboldi C, Di Bucchianico S, Coppedè F (2015) Nanomaterials and neurodegeneration. Environ Mol Mutagen 56:149–170

    CAS  Google Scholar 

  • Mistry A, Stolnik S, Illum L (2015) Nose-to-brain delivery: investigation of the transport of nanoparticles with different surface characteristics and sizes in excised porcine olfactory epithelium. Mol Pharm 12:2755–2766

    CAS  Google Scholar 

  • Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel science 311:622–627

    CAS  Google Scholar 

  • Oberdörster G, Celein RM, Ferin J, Weiss B (1995) Association of particulate air pollution and acute mortality: involvement of ultrafine particles? Inhalation Toxicol 7:111–124

    Google Scholar 

  • Pasupuleti S, Alapati S, Ganapathy S, Anumolu G, Pully NR, Prakhya BM (2012) Toxicity of zinc oxide nanoparticles through oral route. Toxicol Ind Health 28:675–686

    CAS  Google Scholar 

  • Patra P, Mitra S, Debnath N, Goswami A (2012) Biochemical-, biophysical-, and microarray-based antifungal evaluation of the buffer-mediated synthesized nano zinc oxide: an in vivo and in vitro toxicity study. Langmuir 28:16966–16978

    CAS  Google Scholar 

  • Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59:3485–3498

    CAS  Google Scholar 

  • Sabir S, Arshad M, Chaudhari SK (2014) Zinc oxide nanoparticles for revolutionizing agriculture: synthesis and applications. Sci World J 2014:1–8

    Google Scholar 

  • Salisbury RL, Agans R, Huddleston ME, Snyder A, Mendlein A, Hussain S (2018) Toxicological mechanisms of engineered nanomaterials: role of material properties in inducing different biological responses. Handbook of developmental neurotoxicology, 2nd edn. Elsevier, Amsterdam, pp 237–249

    Google Scholar 

  • Saptarshi SR, Duschl A, Lopata AL (2015) Biological reactivity of zinc oxide nanoparticles with mammalian test systems: an overview. Nanomedicine 10:2075–2092

    CAS  Google Scholar 

  • Seok SH et al (2013) Rat pancreatitis produced by 13-week administration of zinc oxide nanoparticles: biopersistence of nanoparticles and possible solutions. J Appl Toxicol 33:1089–1096

    CAS  Google Scholar 

  • Sharma HS (2009) A special section on nanoneuroscience: nanoneurotoxicity and nanoneuroprotection. J Nanosci Nanotechnol 9:4992

    CAS  Google Scholar 

  • Sharma V, Shukla RK, Saxena N, Parmar D, Das M, Dhawan A (2009a) DNA damaging potential of zinc oxide nanoparticles in human epidermal cells. Toxicol Lett 185:211–218

    CAS  Google Scholar 

  • Sharma VK, Yngard RA, Lin Y (2009b) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Coll Interface Sci 145:83–96

    CAS  Google Scholar 

  • Soetan K, Olaiya C, Oyewole O (2010) The importance of mineral elements for humans, domestic animals and plants—a review. African J Food Sci 4:200–222

    CAS  Google Scholar 

  • Subramaniam VD et al (2018) Health hazards of nanoparticles: understanding the toxicity mechanism of nanosized ZnO in cosmetic products. Drug Chem Toxicol 42:1–10

    Google Scholar 

  • Takeda A (2000) Movement of zinc and its functional significance in the brain. Brain Res Rev 34:137–148

    CAS  Google Scholar 

  • Talam S, Karumuri SR, Gunnam N (2012) Synthesis, characterization, and spectroscopic properties of ZnO nanoparticles. ISRN Nanotechnol 2012:1–6

    Google Scholar 

  • Tian L et al (2015) Neurotoxicity induced by zinc oxide nanoparticles: age-related differences and interaction. Sci Rep 5:16117

    CAS  Google Scholar 

  • Tung JY, Gage WH, Poupart P, McIlroy WE (2014) Upper limb contributions to frontal plane balance control in rollator-assisted walking. Assist Technol 26:15–21

    Google Scholar 

  • Wang ZL (2004) Zinc oxide nanostructures: growth, properties and applications. J Phys Condens Matter 16:R829

    CAS  Google Scholar 

  • Wang B et al (2008) Acute toxicological impact of nano-and submicro-scaled zinc oxide powder on healthy adult mice. J Nanopart Res 10:263–276

    CAS  Google Scholar 

  • Whittle N, Lubec G, Singewald N (2009) Zinc deficiency induces enhanced depression-like behaviour and altered limbic activation reversed by antidepressant treatment in mice. Amino acids 36:147–158

    CAS  Google Scholar 

  • Xiaoli F, Junrong W, Xuan L, Yanli Z, Limin W, Jia L, Longquan S (2017) Prenatal exposure to nanosized zinc oxide in rats: neurotoxicity and postnatal impaired learning and memory ability. Nanomedicine 12:777–795

    Google Scholar 

  • Xie Y, Wang Y, Zhang T, Ren G, Yang Z (2012) Effects of nanoparticle zinc oxide on spatial cognition and synaptic plasticity in mice with depressive-like behaviors. J Biomed Sci 19:14

    CAS  Google Scholar 

  • Yang Z, Liu Z, Allaker R, Reip P, Oxford J, Ahmad Z, Reng G (2013) A review of nanoparticle functionality and toxicity on the central nervous system. Nanotechnology, the brain, and the future. Springer, New York, pp 313–332

    Google Scholar 

  • Yoon Y et al (2018) Genetic ablation of EWS RNA binding protein 1 (EWSR1) leads to neuroanatomical changes and motor dysfunction in mice. Exp Neurobiol 27:103–111

    Google Scholar 

  • Zak AK, Razali R, Majid WA, Darroudi M (2011) Synthesis and characterization of a narrow size distribution of zinc oxide nanoparticles. Int J Nanomed 6:1399

    Google Scholar 

  • Zhang L, Jiang Y, Ding Y, Povey M, York D (2007) Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J Nanoparticle Res 9:479–489

    Google Scholar 

  • Zhang X-Q, Xu X, Bertrand N, Pridgen E, Swami A, Farokhzad OC (2012) Interactions of nanomaterials and biological systems: implications to personalized nanomedicine. Adv Drug Deliv Rev 64:1363–1384

    CAS  Google Scholar 

  • Zhao J, Xu L, Zhang T, Ren G, Yang Z (2009) Influences of nanoparticle zinc oxide on acutely isolated rat hippocampal CA3 pyramidal neurons. Neurotoxicology 30:220–230

    CAS  Google Scholar 

  • Zhu J-W, Li Y-F, Wang Z-T, Jia W-Q, Xu R-X (2016) Toll-like receptor 4 deficiency impairs motor coordination. Front Neurosci 10:33

    Google Scholar 

Download references

Acknowledgements

The authors are highly thankful to the Department of Physics and CASP (Centre of Advanced Physics) Government College University, Lahore, Pakistan, for providing the facilities for characterization of nanoparticles. Provision of laboratory facilities, model animals, and personnel support by the Department of Zoology, Government College University, Lahore, Pakistan, is dually acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atif Yaqub.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yaqub, A., Faheem, I., Anjum, K.M. et al. Neurotoxicity of ZnO nanoparticles and associated motor function deficits in mice. Appl Nanosci 10, 177–185 (2020). https://doi.org/10.1007/s13204-019-01093-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-019-01093-3

Keywords

Navigation