Skip to main content
Log in

Parental Lead Exposure Promotes Neurobehavioral Disorders and Hepatic Dysfunction in Mouse Offspring

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Lead (Pb) induces neurotoxicity in both children and adults. Children are more vulnerable to Pb toxicity than adults. Little is known about the effects of Pb on the mental health of the children who are prenatally exposed. Therefore, we designed an animal experiment to compare the adverse effects of Pb on neurobehavioral and hepatic functions between Pb-exposed (Pb mice) and parental Pb-exposed (P-Pb mice) group mice. Mice were treated with Pb-acetate (10 mg/kg bodyweight/day) via drinking water. Male mice from unexposed parents treated with Pb for 90 days were defined as Pb mice, whereas male mice from Pb-exposed parents treated with Pb for further 90 days were defined as P-Pb mice. Anxiety-like behavior and spatial memory and learning were assessed by elevated plus maze and Morris water maze. Serum hepatic enzyme activities and butyrylcholinesterase activity were measured by an analyzer. P-Pb mice displayed increased anxiety-like behavior and memory and learning impairments compared to Pb mice. BChE activity was significantly decreased in P-Pb mice compared to Pb mice. Pb levels in the brains of P-Pb mice were significantly higher than those of Pb mice. The activities of serum hepatic enzymes of P-Pb mice were also higher than those of Pb mice. Additionally, histopathology data revealed that hepatic tissue injury was more pronounced in P-Pb mice than in Pb mice. Thus, the results suggest that persistent exposure to Pb from fetus to adult causes more severe neurobehavioral changes and hepatic toxicities than adult exposure only.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The dataset supporting the findings of the study is available from the corresponding author on request.

References

  1. Flora G, Gupta D, Tiwari A (2012) Toxicity of lead: a review with recent updates. Interdiscip Toxicol 5(2):47–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hasan MK, Shahriar A, Jim KU (2019) Water pollution in Bangladesh and its impact on public health. Heliyon 5(8):e02145

    Article  PubMed  PubMed Central  Google Scholar 

  3. UNICEF. Bangladesh: adolescents. Available at: http://www.unicef.org/bangladesh/children 356.htm. Accessed 6 Oct 2008

  4. Mitra AK, Haque A, Islam M, Bashar SA (2009) Lead poisoning: an alarming public health problem in Bangladesh. Int J Environ Res Public Health 6(1):84–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kaiser R, Henderson AK, Daley WR, Naughton M, Khan MH, Rahman M, Kieszak S, Rubin CH (2001) Blood lead levels of primary school children in Dhaka, Bangladesh. Environ Health Perspect 109:563–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bhuiyan MA, Islam MA, Dampare SB, Parvez L, Suzuki S (2010) Evaluation of hazardous metal pollution in irrigation and drinking water systems in the vicinity of a coal mine area of northwestern Bangladesh. J Hazard Mater 179(1-3):1065–1077

    Article  CAS  PubMed  Google Scholar 

  7. Mostafa MG, Uddin SMH, Haque ABMH (2017) Assessment of hydro-geochemistry and groundwater quality of Rajshahi City in Bangladesh. Appl Water Sci 7:4663–4671

    Article  CAS  Google Scholar 

  8. WHO, Regional Office for South-East Asia (2002) Country health system profile: Bangladesh. Available from: http://www.who.int/gho/countries/bgd/country_profiles/en/. Accessed 5 Jan 2021

  9. Dumková J, Smutná T, Vrlíková L, Le Coustumer P, Večeřa Z, Dočekal B, Mikuška P, Čapka L, Fictum P, Hampl A, Buchtová M (2017) Sub-chronic inhalation of lead oxide nanoparticles revealed their broad distribution and tissue-specific subcellular localization in target organs. Part Fibre Toxicol 14(1):55

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Kasten-Jolly J, Pabello N, Bolivar VJ, Lawrence DA (2012) Developmental lead effects on behavior and brain gene expression in male and female BALB/cAnNTac mice. Neurobehav Toxicol 33(5):1005–1020

    CAS  Google Scholar 

  11. Weisskopf MG, Proctor SP, Wright RO, Schwartz J, Spiro A 3rd, Sparrow D, Nie H, Hu H (2007) Cumulative lead exposure and cognitive performance among elderly men. Epidemiology 18(1):59–66

    Article  PubMed  Google Scholar 

  12. Basha R, Reddy GR (2010) Developmental exposure to lead and late life abnormalities of nervous system. Indian J Exp Biol 48:636–641

    CAS  PubMed  Google Scholar 

  13. Athanasopoulos D, Karagiannis G, Tsolaki M (2016) Recent findings in Alzheimer disease and nutrition focusing on epigenetics. Adv Nutr 7(5):917–927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gupta VK, You Y, Gupta VB, Klistorner A, Graham SL (2013) TrkB receptor signaling: implications in neurodegenerative, psychiatric and proliferative disorders. Int J Mol Sci 14(5):10122–10142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Sanders T, Liu Y, Buchner V, Tchounwou PB (2009) Neurotoxic effects and biomarkers of lead exposure: a review. Rev Environ Health 24(1):15–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. (2012) Committee opinion No. 533: lead screening during pregnancy and lactation. Comm Obstetr Pract Obstet Gynecol 120(2 Pt 1):416–20

  17. Chen XK, Yang Q, Smith G, Krewski D, Walker M, Wen SW (2006) Environmental lead level and pregnancy-induced hypertension. Environ Res 100(3):424–430

    Article  CAS  PubMed  Google Scholar 

  18. Pal M, Sachdeva M, Gupta N, Mishra P, Yadav M, Tiwari A (2015) Lead exposure in different organs of mammals and prevention by curcumin–nanocurcumin: a review. Biol Trace Elem Res 168(2):380–391

    Article  CAS  PubMed  Google Scholar 

  19. Zhu G, Fan G, Feng C, Li Y, Chen Y, Zhou F, Du G, Jiao H, Liu Z, Xiao X, Lin F (2013) The effect of lead exposure on brain iron homeostasis and the expression of DMT1/FP1 in the brain in developing and aged rats. Toxicol Lett 216(2-3):108–123

    Article  CAS  PubMed  Google Scholar 

  20. Chiodo LM, Jacobson SW, Jacobson JL (2004) Neurodevelopmental effects of postnatal lead exposure at very low levels. Neurotoxicol Teratol 26(3):359–371

    Article  CAS  PubMed  Google Scholar 

  21. Vigeh M, Yokoyama K, Kitamura F, Afshinrokh M, Beygi A, Niroomanesh S (2010) Early pregnancy blood lead and spontaneous abortion. Women Health 50(8):756–766

    Article  PubMed  Google Scholar 

  22. Dursun A, Yurdakok K, Yalcin SS, Tekinalp G, Aykut O, Orhan G, Morgil GK (2016) Maternal risk factors associated with lead, mercury and cadmium levels in umbilical cord blood, breast milk and newborn hair. J Matern Fetal Neonatal Med 29(6):954–961

    Article  CAS  PubMed  Google Scholar 

  23. Liu J, Liu X, Wang W, McCauley L, Pinto-Martin J, Wang Y, Li L, Yan C, Rogan WJ (2014) Blood lead levels and children’s behavioral and emotional problems: a cohort study. JAMA Pediatr 168(8):737–745

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hauptman M, Bruccoleri R, Woolf AD (2017) An update on childhood lead poisoning. Clin Pediatr Emerg Med 18(3):181–192

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lanphear BP, Hornung R, Khoury J, Yolton K, Baghurst P, Bellinger DC, Canfield RL, Dietrich KN, Bornschein R, Greene T, Rothenberg SJ, Needleman HL, Schnaas L, Wasserman G, Graziano J, Roberts R (2005) Low-level environmental lead exposure and children’s intellectual function: an international pooled analysis. Environ Health Perspect 113(7):894–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Canfield RL, Henderson CR, Jr Cory-Slechta DA, Cox C, Jusko TA, Lanphear BP (2003) Intellectual impairment in children with blood lead concentrations below 10 μg/dL. N Engl J Med 348:1517–1526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jarrar BM, Taib NT (2012) Histological and histochemical alterations in the liver induced by lead chronic toxicity. Saudi J Biol Sci 19(2):203–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Khan DA, Qayyum S, Saleem S, Khan FA (2008) Lead-induced oxidative stress adversely affects health of the occupational workers. Toxicol Ind Health 24(9):611–618

    Article  CAS  PubMed  Google Scholar 

  29. Feng Y, Wang N, Ye X, Li H, Feng Y, Cheung F, Nagamatsu T (2011) Hepatoprotective effect and its possible mechanism of Coptidisrhizoma aqueous extract on carbon tetrachloride-induced chronic liver hepatotoxicity in rats. J Ethnopharmacol 138:683–690

    Article  CAS  PubMed  Google Scholar 

  30. Singal AK, Jampana SC, Weinman SA (2011) Antioxidants as therapeutic agents for liver disease. Liver Int 31(10):1432–1448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rashid H, Mahboob A, Ahmed T (2017) Role of cholinergic receptors in memory retrieval depends on gender and age of memory. Behav Brain Res 331:233–240

    Article  CAS  PubMed  Google Scholar 

  32. Aktar S, Jahan M, Alam S, Mohanto NC, Arefin A, Rahman A, Haque A, Himeno S, Hossain K, Saud ZA (2017) Individual and combined effects of arsenic and lead on behavioral and biochemical changes in mice. Biol Trace Elem Res 177(2):288–296

    Article  CAS  PubMed  Google Scholar 

  33. Seddik L, Bah TM, Aoues A, Brnderdour M, Silmani M (2010) Dried leaf extract protects against lead-induced neurotoxicity in Wistar rats. Eur J Sci Res 42(1):139–151

    Google Scholar 

  34. Biswas S, Banna HU, Jahan M, Anjum A, Siddique AE, Roy A, Nikkon F, Salam KA, Haque A, Himeno S, Hossain K, Saud ZA (2020) In vivo evaluation of arsenic-associated behavioral and biochemical alterations in F0 and F1 mice. Chemosphere 245:125619

    Article  CAS  PubMed  Google Scholar 

  35. Xu Y, Li G, Han C, Sun L, Zhao R, Cui S (2005) Protective effects of Hippophae rhamnoides L. juice on lead-induced neurotoxicity in mice. Biol Pharm Bull 28(3):490–494

    Article  CAS  PubMed  Google Scholar 

  36. Mishra M, Acharya UR (2004) Protective action of vitamins on the spermatogenesis in lead-treated Swiss mice. J Trace Elem Med Biol 18(2):173–178

    Article  CAS  PubMed  Google Scholar 

  37. Kasten-Jolly J, Lawrence DA (2017) Sex-specific effects of developmental lead exposure on the immune-neuroendocrine network. Toxicol Appl Pharmacol 334:142–157

    Article  CAS  PubMed  Google Scholar 

  38. Singh G, Singh V, Sobolewski M, Cory-Slechta DA, Schneider JS (2018) Sex-dependent effects of developmental lead exposure on the brain. Front Genet 9:89

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Richter SH, Kästner N, Loddenkemper DH, Kaiser S, Sachser N (2016) A time to wean? Impact of weaning age on anxiety-like behaviour and stability of behavioural traits in full adulthood. PLoS One 11(12):e0167652

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Koehl M, Lemaire V, Vallée M, Abrous N, Piazza PV, Mayo W, Maccari S, Le Moal M (2001) Long term neurodevelopmental and behavioral effects of perinatal life events in rats. Neurotox Res 3(1):65–83

    Article  CAS  PubMed  Google Scholar 

  41. Schneider P, Ho YJ, Spanagel R, Pawlak CR (2011) A novel elevated plus-maze procedure to avoid the one-trial tolerance problem. Front Behav Neurosci 5:43

    Article  PubMed  PubMed Central  Google Scholar 

  42. Carobrez AP, Bertoglio LJ (2005) Ethological and temporal analyses of anxiety-like behavior: the elevated plus-maze model 20 years on. Neurosci Biobehav Rev 29(8):1193–1205

    Article  CAS  PubMed  Google Scholar 

  43. Caldarone BJ, King SL, Picciotto MR (2008) Sex differences in anxiety-like behavior and locomotor activity following chronic nicotine exposure in mice. Neurosci Lett 439(2):187–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Barnhart CD, Yang D, Lein PJ (2015) Using the Morris water maze to assess spatial learning and memory in weanling mice. PLoS One 10(4):e0124521

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Woreta TA, Alqahtani SA (2014) Evaluation of abnormal liver tests. Med Clin 98(1):1–6

    Google Scholar 

  46. Anjum A, Biswas S, Rahman M, Rahman A, Siddique AE, Karim Y, Aktar S, Nikkon F, Haque A, Himeno S, Hossain K, Saud ZA (2019) Butyrylcholinesterase-a potential plasma biomarker in manganese-induced neurobehavioral changes. Environ Sci Pollut Res 26(7):6378–6387

    Article  CAS  Google Scholar 

  47. Dong MX, Xu XM, Hu L, Liu Y, Huang YJ, Wei YD (2017) Serum butyrylcholinesterase activity: a biomarker for Parkinson’s disease and related dementia. Biomed Res Int 2017:1524107

    Article  PubMed  PubMed Central  Google Scholar 

  48. Biswas S, Anjum A, Banna HU, Rahman M, Siddique AE, Karim Y, Nikkon F, Haque A, Hossain K, Saud ZA (2019) Manganese attenuates the effects of arsenic on neurobehavioral and biochemical changes in mice co-exposed to arsenic and manganese. Environ Sci Pollut Res 26(28):29257–29266

    Article  CAS  Google Scholar 

  49. Noman AS, Dilruba S, Mohanto NC, Rahman L, Khatun Z, Riad W, Al Mamun A, Alam S, Aktar S, Chowdhury S, Saud ZA, Rahman Z, Hossain K, Haque A (2015) Arsenic-induced histological alterations in various organs of mice. J Cytol Histol 6(3):323

    PubMed  PubMed Central  Google Scholar 

  50. Mason LH, Harp JP, Han DY (2014) Pb neurotoxicity: neuropsychological effects of lead toxicity. Biomed Res Int 2014:840547

    Article  PubMed  PubMed Central  Google Scholar 

  51. Barkur RR, Bairy LK (2015) Evaluation of passive avoidance learning and spatial memory in rats exposed to low levels of lead during specific periods of early brain development. Int J Occup Med Environ Health 28(3):533–544

    Article  Google Scholar 

  52. Kahloula K, Slimani M, Aoues A (2009) Behavioural and neurochemical studies of perinatal lead exposed in rat Wistar. Eur J Sci Res 35:603–661

    Google Scholar 

  53. Leret ML, Millan JAS, Antonio MT (2003) Perinatal exposure to lead and cadmium affects anxiety-like behavior. Toxicology 186(1-2):125–130

    Article  CAS  PubMed  Google Scholar 

  54. Darvesh S (2016) Butyrylcholinesterase as a diagnostic and therapeutic target for Alzheimer’s disease. Curr Alzheimer Res 13(10):1173–1177

    Article  CAS  PubMed  Google Scholar 

  55. Santarpia L, Grandone I, Contaldo F, Pasanisi F (2013) Butyrylcholinesterase as a prognostic marker: a review of the literature. J Cachexia Sarcopenia Muscle 4(1):31–39

    Article  PubMed  Google Scholar 

  56. Bono GF, Simão-Silva DP, Batistela MS, Josviak ND, Dias PF, Nascimento GA, Souza RL, Piovezan MR, Souza RK, Furtado-Alle L (2015) Butyrylcholinesterase: K variant, plasma activity, molecular forms and rivastigmine treatment in Alzheimer’s disease in a Southern Brazilian population. Neurochem Int 81:57–62

    Article  CAS  PubMed  Google Scholar 

  57. Lockridge O (2015) Review of human butyrylcholinesterase structure, function, genetic variants, history of use in the clinic, and potential therapeutic uses. Pharm Ther 148:34–46

    Article  CAS  Google Scholar 

  58. Peres TV, Schettinger MR, Chen P, Carvalho F, Avila DS, Bowman AB, Aschner M (2016) Manganese-induced neurotoxicity: a review of its behavioral consequences and neuroprotective strategies. BMC Pharmacol Toxicol 17(1):57

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Darvesh S, Reid GA (2016) Reduced fibrillar β-amyloid in subcortical structures in a butyrylcholinesterase-knockout Alzheimer disease mouse model. Chem Biol Interact 259:307–312

    Article  CAS  PubMed  Google Scholar 

  60. Reid GA, Darvesh S (2015) Butyrylcholinesterase-knockout reduces brain deposition of fibrillar β-amyloid in an Alzheimer mouse model. Neuroscience 298:424–435

    Article  CAS  PubMed  Google Scholar 

  61. Antonio MT, Corredor L, Leret ML (2003) Study of the activity of several brain enzymes like markers of the neurotoxicity induced by perinatal exposure to lead and/or cadmium. Toxicol Lett 143(3):331–340

    Article  CAS  PubMed  Google Scholar 

  62. Reddy GR, Devi CB, Chetty CS (2007) Developmental lead neurotoxicity: alterations in brain cholinergic system. Neuro Toxicol 28(2):402–407

    CAS  Google Scholar 

  63. Sun L, Zhao ZY, Hu J, Zhou XL (2005) Potential association of lead exposure during early development of mice with alteration of hippocampus nitric oxide levels and learning memory. Biomed Environ Sci 18(6):375–378

    CAS  PubMed  Google Scholar 

  64. Yadav RS, Chandravanshi LP, Shukla RK, Sankhwar ML, Ansari RW, Shukla PK, Pant AB, Khanna VK (2011) Neuroprotective efficacy of curcumin in arsenic induced cholinergic dysfunctions in rats. Neurotoxicology 32(6):760–768

    Article  CAS  PubMed  Google Scholar 

  65. Rodríguez VM, Carrizales L, Jiménez-Capdeville ME, Dufour L, Giordano M (2001) The effects of sodium arsenite exposure on behavioral parameters in the rat. Brain Res Bull 55(2):301–308

    Article  PubMed  Google Scholar 

  66. Rodríguez VM, Jiménez-Capdeville ME, Giordano M (2003) The effects of arsenic exposure on the nervous system. Toxicol Lett 145(1):1–18

    Article  PubMed  CAS  Google Scholar 

  67. Flora SJ, Mittal M, Mishra D (2009) Co-exposure to arsenic and fluoride on oxidative stress, glutathione linked enzymes, biogenic amines and DNA damage in mouse brain. J Neurol Sci 285(1-2):198–205

    Article  CAS  PubMed  Google Scholar 

  68. Wang J, Wu J, Zhang Z (2006) Oxidative stress in mouse brain exposed to lead. Ann Occup Hyg 50(4):405–409

    CAS  PubMed  Google Scholar 

  69. Patki G, Solanki N, Atrooz F, Allam F, Salim S (2013) Depression, anxiety-like behavior and memory impairment are associated with increased oxidative stress and inflammation in a rat model of social stress. Brain Res 1539:73–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Allam F, Dao AT, Chugh G, Bohat R, Jafri F, Patki G, Mowrey C, Asghar M, Alkadhi KA, Salim S (2013) Grape powder supplementation prevents oxidative stress-induced anxiety-like behavior, memory impairment, and high blood pressure in rats. J Nutr 143(6):835–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhao ZH, Zheng G, Wang T, Du K, Han X, Luo Z, Shen X, Chen J (2018) Low-level gestational lead exposure alters dendritic spine plasticity in the hippocampus and reduces learning and memory in rats. Sci Rep 8(1):3533

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Ahmad F, Salahuddin M, Alsamman K, AlMulla AA, Salama KF (2018) Developmental lead (Pb)-induced deficits in hippocampal protein translation at the synapses are ameliorated by ascorbate supplementation. Neuropsychiatr Dis Treat 14:3289–3298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Buffington SA, Huang W, Costa-Mattioli M (2014) Translational control in synaptic plasticity and cognitive dysfunction. Annu Rev Neurosci 37(1):17–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Neal AP, Stansfield KH, Worley PF, Tompson RE, Guilarte TR (2010) Lead exposure during synaptogenesis alters vesicular proteins and impairs vesicular release: potential role of NMDA receptor-dependent BDNF signaling. Toxicol Sci 116(1):249–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Piñeiro-Carrero VM, Piñeiro EO (2004) Liver. Liver Pediatr 113:1097–1106

    Article  Google Scholar 

  76. Nehru B, Kaushal S (1993) Alterations in the hepatic enzymes following experimental lead poisoning. Biol Trace Elem Res 38(1):27–34

    Article  CAS  PubMed  Google Scholar 

  77. Taib NT, Jarrar BM, Mubarak M (2004) Ultrastructural alterations in hepatic tissues of white rats (Rattus norvegicus) induced by lead experimental toxicity. Saudi J Biol Sci 11(1):11–20

    Google Scholar 

  78. Shinozoka H, Ohmura T, Katyal S, Zedda A, Ledda-Columbano G, Columbano A (1996) Possible roles of nonparenchymal cells in hepatocyte proliferation induced by lead nitrate and by tumor necrosis factor alpha. Hepatology 23(8):1572–1577

    Google Scholar 

  79. Faulk C, Barks A, Liu K, Goodrich JM, Dolinoy DC (2013) Early-life lead exposure results in dose- and sex-specific effects on weight and epigenetic gene regulation in weanling mice. Epigenomics 5(5)

  80. Dou JF, Farooqui Z, Faulk CD, Barks AK, Jones T, Dolinoy DC, Bakulski KM (2019) Perinatal lead (Pb) exposure and cortical neuron-specific DNA methylation in male mice. Genes (Basel) 10(4):274

    Article  CAS  Google Scholar 

Download references

Funding

This research work was supported by the grant (Grant No – 1181/5/52/RABI/BINGAN-20/19-20) from the University of Rajshahi, Bangladesh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahangir Alam Saud.

Ethics declarations

Ethics Approval

Institutional ethical approval (No: 127/320/IAMEBBC/IBSc) was received for the animal experiment from the Institute of Biological Sciences, University of Rajshahi, Bangladesh.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banna, H.U., Anjum, A., Biswas, S. et al. Parental Lead Exposure Promotes Neurobehavioral Disorders and Hepatic Dysfunction in Mouse Offspring. Biol Trace Elem Res 200, 1171–1180 (2022). https://doi.org/10.1007/s12011-021-02709-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-02709-y

Keywords

Navigation