Skip to main content

Advertisement

Log in

Individual and Combined Effects of Arsenic and Lead on Behavioral and Biochemical Changes in Mice

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Arsenic (As) toxicity has caused an environmental tragedy affecting millions of people in the world. Little is known about the toxic effects of As on neurobehavioral and biochemical changes in vivo. Along this line of metal toxicity, co-exposure of lead (Pb) could aggravate the situation in the host. The present study was designed to explore the combined effects of As and Pb on behavioral changes like anxiety, spatial memory and learning impairment, and blood indices related to organ dysfunction. Exposure of mice to As (10 mg/kg body weight), Pb (10 mg/kg body weight), and As + Pb via drinking water significantly decreased the time spent exploring the open arms while it increased the time spent in the closed arms compared to control mice in the elevated plus maze. The mean latency time of the control group to find the platform decreased significantly during the learning for 7 days compared to all three treated groups in the Morris water maze test, and the As-exposed group spent significantly less time in the desired quadrant as compared to the control group in the probe trial. Both metals posed an anxiety-like behavior and deficits in spatial memory and learning, and also altered blood indices related to liver and kidney dysfunction, and a combined exposure of these metals inhibited the individual accumulation of As and Pb. Taken together, these data suggest that As has more toxic effects on neurobehavioral and biochemical changes than Pb, and there may be antagonism in the effects and accumulation between these two toxicants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Argos M, Kalra T, Rathouz PJ, Chen Y, Pierce B, Parvez F, Islam T, Ahmed A, Rakibuz-Zaman M, Hasan R, Sarwar G, Slavkovich V, van Geen A, Graziano J, Ahsan H (2010) Arsenic exposure from drinking water, and all-cause and chronic-disease mortalities in Bangladesh (HEALS): a prospective cohort study. Lancet 376:252–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chowdhury UK, Biswas BK, Chowdhury TR (2000) Groundwater arsenic contamination in Bangladesh and West Bengal, India. Environ Health Perspect 108(5):393–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tapio S, Grosche B (2006) Arsenic in the aetiology of cancer. Mutat Res 612:215–246

    Article  CAS  PubMed  Google Scholar 

  4. GuhaMazumder DN, Haque R, Ghosh N, De BK, Santra A, Chakraborty D, Smith AH (1998) Arsenic levels in drinking water and the prevalence of skin lesions in West Bengal, India. Int J Epidemiol 27(5):871–877

    Article  CAS  Google Scholar 

  5. Parvez F, Chen Y, Maria A, Hussain AI, Hassina M, Dhar R, Geen A, Graziano J, Ahsan H (2006) Prevalence of arsenic exposure from drinking water and awareness of its health risks in a Bangladeshi population; results from a large population-based study. Environ Health Perspect 114(3):355–359

    Article  CAS  PubMed  Google Scholar 

  6. Christina RT, Andrea MA (2014) The effects of arsenic exposure on neurological and cognitive dysfunction in human and rodent studies: a review. Curr Environ Health Rep 1:132–147

    Article  Google Scholar 

  7. Ozone K, Ueno S, Ishizaki M, Hayashi O (2000) Toxicity and oxidative stress induced by organic arsenical diphenylarsinic acid and inorganic arsenicals and their effects on spatial learning ability in mice. J Health Sci 56:517–526

    Article  Google Scholar 

  8. Hei TK, Liu SX, Waldren C (1998) Mutagenicity of arsenic in mammalian cells; role of reactive oxygen species. Proc Natl Acad Sci 95(14):8103–8107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu SX, Athar M, Lippai I, Waldren C, Hei TK (2001) Induction of oxyradicals by arsenic: implication for mechanism of genotoxicity. Proc Natl Acad Sci 98(4):1643–1648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lynn S, Shiung JN, Gurr JR, Jan KY (1998) Arsenic stimulates poly (ADP ribosylation) by generation of nitric oxide. Free Rad Biol Med 24(3):442–449

    Article  CAS  PubMed  Google Scholar 

  11. Frisbie SH, Ortega R, Maynard DM, Sarkar B (2002) The concentrations of arsenic and other toxic elements in Bangladesh’s drinking water. Environ Health Perspect 110(11):1147–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Englyst V, Lundstrom NG, Gerhandsson L, Rylander L, Nordberg G (2001) Lung cancer risks among lead smelter workers also exposed to arsenic. Sci Total Environ 273:77–82

    Article  CAS  PubMed  Google Scholar 

  13. Nehez M, Lorencz R, Desi I (2000) Simultaneous action of cypermethrin and two environmental pollutant metals, cadmium and lead, on bone marrow cell chromosomes of rats in subchronic administration. Ecotoxicol Environ Saf 45(1):55–60

    Article  CAS  PubMed  Google Scholar 

  14. Elias RW (1985) Lead exposure in human environment. In: Mahaffey K (ed) Dietary and environmental lead. Human health effects. Elsevier, Amsterdam-New York-Oxford, pp. 79–107

    Google Scholar 

  15. Lambert TW, Lane S (2004) Lead, arsenic and polycyclic aromatic hydrocarbons in soil and house dust in the communities sorrounding the Sydney, Nova Scotia, tar ponds. Environ Health Perspect 112(1):35–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Saper RB, Kales SN, Paquin J, Burns MJ, Eisenberg DM, Davis RB, Phillips RS (2004) Heavy metal content of Ayurvedic herbal medicine products. JAMA 292(23):2868–2873

    Article  CAS  PubMed  Google Scholar 

  17. Hoffer BJ, Olson L, Palmer MR (1987) Toxic effects of lead in the developing nervous system: in oculo experimental models. Environ Health Perspect 74:169–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. WHO (2010) Childhood lead poisoning. WHO, Geneva, Switzerland

    Google Scholar 

  19. Antonio MT, Corredor L, Leret ML (2003) Study of the activity of several brain enzymes like markers of the neurotoxicity induced by perinatal exposure to lead and/or cadmium. Toxicol Lett 143(3):331–340

    Article  CAS  PubMed  Google Scholar 

  20. Lanphear BP, Hornung R, Ho M, Howard CR, Eberle S, Knauf K (2002) Environmental lead exposure during early childhood. J Pediatr 140(1):40–47

    Article  CAS  PubMed  Google Scholar 

  21. Lidsky TI, Schneider JS (2003) Lead neurotoxicity in children: basic mechanisms and clinical correlates. Brain 126:5–19

    Article  PubMed  Google Scholar 

  22. Bardullas U, Limón-Pacheco JH, Giordano M, Carrizales L, Mendoza-Trejo MS, Rodríguez VM (2009) Chronic low-level arsenic exposure causes gender-specific alterations in locomotor activity, dopaminergic systems, and thioredoxin expression in mice. Toxicol Appl Pharmacol 239(2):169–177

    Article  CAS  PubMed  Google Scholar 

  23. Correa M, Roig-Navarro AF, Aragon CM (2004) Motor behavior and brain enzymatic changes after acute lead intoxication on different strains of mice. Life Sci 74(16):2009–2021

    Article  CAS  PubMed  Google Scholar 

  24. Rodriguez VM, Carrizales L, Mendoza MS, Fajardo OR, Giordano M (2002) Effects of sodium arsenite exposure on development and behavior in the rat. Neurotoxicol Teratol 24(6):743–750

    Article  CAS  PubMed  Google Scholar 

  25. Calderón J, Navarro ME, Jimenez-Capdeville ME, Santos-Diaz MA, Golden A, Rodriguez-Leyva I, Borja-Aburto V, Díaz-Barriga F (2001) Exposure to arsenic and lead and neuropsychological development in Mexican children. Environ Res 85(2):69–76

    Article  PubMed  Google Scholar 

  26. Ramírez-Campos J, Ramos-Peek J, Martínez-Barros M, Zamora-Peralta M, Martínez-Cerrato J (1998) Peripheral neuropathy caused by acute arsenic poisoning. Gac Med Mex 134(2):241–246

    PubMed  Google Scholar 

  27. Bishayi B, Sengupta M (2006) Synergism in immune toxicological effects due to repeated combined administration of arsenic and lead in mice. Int Immunopharmacol 6(3):454–464

    Article  CAS  PubMed  Google Scholar 

  28. Saritha S, Kumar PK, Sreenivasula PR, Tripathy NK, Rajarami GR (2014) Developmental arsenic and lead exposure: behavioral and neurochemical perturbations of albino rats. IAJPR 4:1707–1716

    Google Scholar 

  29. Das AP, Bag S, Sahu R, Dua TK, Sinha MK, Gangopadhyay M, Zaman K, Dewanjee S (2010) Protective effect of Corchorus olitorius leaves on sodium arsenite-induced toxicity in experimental rats. Food Chem Toxicol 48:326–335

    Article  CAS  PubMed  Google Scholar 

  30. Rodriguez VM, Carrizales L, Jimenez-Capdeville ME, Dufour L, Giordano M (2001) The effect of sodium arsenite exposure on behavioral parameters in rat. Brain Res Bull 55(2):301–308

    Article  CAS  PubMed  Google Scholar 

  31. Karim MR, Haque A, Islam K, Ali N, Salam KA, Saud ZA, Hossain E, Fajol A, Akhand AA, Himeno S, Hossain K (2010) Protective effects of the dietary supplementation of turmeric (Curcuma longa L.) on sodium arsenite-induced biochemical perturbation in mice. Bangladesh Med Res Council Bull 36:82–88

    Google Scholar 

  32. Xu Y, Li G, Han C, Sun L, Zhao R, Cui S (2005) Protective effects of Hippophae rhamnoides L. juice on lead-induced neurotoxicity in mice. Biol Pharm Bull 28(3):490–494

    Article  CAS  PubMed  Google Scholar 

  33. Mishra M, Acharya UR (2004) Protective action of vitamins on the spermatogenesis in lead-treated Swiss mice. J Trace Element in Med and Biol 18:173–178

    Article  CAS  Google Scholar 

  34. Pellow S, Chopin P, File SE, Briley M (1985) Validation of open-closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods 14:149–167

    Article  CAS  PubMed  Google Scholar 

  35. Leret ML, Millan JAS, Antonio MT (2003) Perinatal exposure to lead and cadmium affects anxiety-like behavior. Toxicology 186:125–130

    Article  CAS  PubMed  Google Scholar 

  36. D'Hooge R, De Deyn PP (2001) Applications of the Morris water maze in the study of learning and memory. Brain Res Brain Res Rev 36(1):60–90

  37. Ali N, Hoque MA, Haque A, Salam KA, Karim MR, Rahman A, Islam K, Saud ZA, Khalek MA, Akhand AA, Hossain M, Mandal A, Karim MR, Miyataka H, Himeno S, Hossain K (2010) Association between arsenic exposure and plasma cholinesterase activity: a population based study in Bangladesh. Environ Health 9:36

    Article  PubMed  PubMed Central  Google Scholar 

  38. Tuot DS, Plantinga LC, Hsu CY, Jordan R, Burrows NR, Hedgeman E, Yee J, Saran R, Powe NR, Centers for Disease Control Chronic Kidney Disease Surveillance Team (2011) Chronic kidney disease awareness among individuals with clinical markers of kidney dysfunction. Clin J Am Soc Nephrol 6(8):1838–1844

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wang JP, Wang SL, Lin Q, Zhang L, Huang D, Nq JC (2009) Association of arsenic and kidney dysfunction in people with diabetes and validation of its effects in rats. Environ Int 35(3):507–511

    Article  CAS  PubMed  Google Scholar 

  40. Islam MS, Mohanto NC, Karim MR, Aktar S, Hoque MM, Rahman A, Jahan M, Khatun R, Aziz A, Salam KA, Saud ZA, Hossain M, Rahman A, Mandal A, Haque A, Miyataka H, Himeno S, Hossain K (2015) Elevated concentrations of serum matrix metalloproteinase-2 and -9 and their associations with circulating markers of cardiovascular diseases in chronic arsenic-exposed individuals. Environ Health 14:92

    Article  PubMed  PubMed Central  Google Scholar 

  41. Karim MR, Rahman M, Islam MAA, Hossain S, Hossain E, Aziz A, Yeasmin F, Agarwal S, Hossain MI, Saud ZA, Nikkon F, Hossain M, Mandal A, Jenkins RO, Haris PI, Miyataka H, Himeno S, Hossain K (2013) Increases in oxidized low-density lipoprotein and other inflammatory and adhesion molecules with a concomitant decrease in high-density lipoprotein in the individuals exposed to arsenic in Bangladesh. Toxicol Sci 135:17–25

    Article  CAS  PubMed  Google Scholar 

  42. Vahidnia A, Romijn F, van derVoet GB, de Wolff FA (2008) Arsenic-induced neurotoxicity in relation to toxicokinetics: effects on sciatic nerve proteins. Chem Biol Interact 176:188–195

    Article  CAS  PubMed  Google Scholar 

  43. Finkelstein Y, Markowitz ME, Rosen JF (1998) Low-level lead-induced neurotoxicity in children: an update on central nervous system effects. Brain Res Brain Res Rev 27(2):168–176

    Article  CAS  PubMed  Google Scholar 

  44. Abazyan B, Dziedzic J, Hua K, Abazyan S, Yang C, Mori S, Pletnikov MV, Guilarte TR (2014) Chronic exposure of mutant DISC1 mice to lead produces sex-dependent abnormalities consistent with schizophrenia and related mental disorders: a gene-environment interaction study. Schizophr Bull 40(3):575–584

    Article  PubMed  Google Scholar 

  45. Gross C, Hen R (2004) The developmental origins of anxiety. Nat Rev Neurosci 5(7):545–552

    Article  CAS  PubMed  Google Scholar 

  46. Weinberger DR (2001) Anxiety at the frontier of molecular medicine. N Engl J Med 344(16):1247–1249

    Article  CAS  PubMed  Google Scholar 

  47. Belzung C, Griebel G (2001) Measuring normal and pathological anxiety-like behaviour in mice: a review. Behav Brain Res 125:141–149

    Article  CAS  PubMed  Google Scholar 

  48. Kahloula K, Slimani M, Aoues A (2009) Behavioural and neurochemical studies of perinatal lead exposed in rat wistar. Eur J Sci Res 35:603–614

    Google Scholar 

  49. Brinkel J, Khan MMH, Kraemer A (2008) A systematic review of arsenic exposure and its social and mental health effects with special reference to Bangladesh. Int J Res Public Health 6(5):1609–1619

    Article  Google Scholar 

  50. Rosado JL, Ronquillo D, Kordas K, Rojas O, Alatorre J, Lopez P, Garcia-Vargas G, Caamano MC, Cebrian ME, Stoltzfus R (2007) Arsenic exposure and cognitive performance in Mexican schoolchildren. Environ Health Perspect 115(9):1371–1375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Von Ehrenstein OS, Poddar S, Yuan Y, Mazumder DG, Eskenazi B, Basu A, Hira-Smith M, Ghosh N, Lahiri S, Haque R, Ghosh A, Kalman D, Das S, Smith AH (2007) Children’s intellectual function in relation to arsenic exposure. Epidemiology 18(1):44–51

    Article  PubMed  Google Scholar 

  52. Ramos-Chávez LA, Rendón-López CRR, Zepeda A, Silva-Adaya D, Del Razo LM, Gonsebatt ME (2015) Neurological effects of inorganic arsenic exposure: altered cysteine/glutamate transport, NMDA expression and spatial memory impairment. Front Cell Neurosci 9:21

    Article  PubMed  PubMed Central  Google Scholar 

  53. Gandhi DN, Kumar R (2013) Arsenic toxicity and neurobehaviors: a review. Innovation Pharma Pharmacotherapy 1:1–15

    CAS  Google Scholar 

  54. Bokara KK, Brown E, McCormick R, Yallapragada PR, Rajanna S, Bettaiya R (2008) Lead-induced increase in antioxidant enzymes and lipid peroxidation products in developing rat brain. Biometals 21(1):9–16

    Article  CAS  PubMed  Google Scholar 

  55. Ercal N, Treeratphan P, Hammond TC, Matthews RH, Grannemann NH, Spitz DR (1996) In vivo indices of oxidative stress in lead exposed C57BL/6 mice are reduced by treatment with meso-2,3-dimercaptosuccinic acid or N-acetylcysteine. Free Radic Biol Med 21(2):157–161

    Article  CAS  PubMed  Google Scholar 

  56. Fortune T, Lurie DI (2009) Chronic low level lead exposure affects the monoaminergic system in the mouse superior olivary complex. J Comp Neurol 513(5):542–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kala SV, Jadhav AL (1995) Region-specific alterations in dopamine and serotonin metabolism in brains of rats exposed to low levels of lead. Neurotoxicology 16(2):297–308

    CAS  PubMed  Google Scholar 

  58. Bharath S, Hsu M, Kaur D, Rajagopalan S, Andersen JK (2002) Glutathione, iron and Parkinson’s disease. Biochem Pharmacol 64(5–6):1037–1048

    Article  CAS  PubMed  Google Scholar 

  59. Dringen R, Gutterer JM, Hirrlinger J (2002) Glutathione metabolism in brain metabolic interaction between astrocytes and neurons in the defense against reactive oxygen species. Eur J Biochem 267(16):4912–4916

    Article  Google Scholar 

  60. Rahman M, Saud ZA, Hossain E, Islam K, Karim MR, Yeasmin T, Nikkon F, Mandal A, Hossain K (2012) Ameliorating effects of Zingiber zerumbet Linn. on sodium arsenite-induced changes of blood indices in experimental mice. Life Sci Med Res:41

  61. Oyeronke AO, Kazeem AA, Babatunde O, Oladimeji T (2007) Interaction and enhancement of the toxic effects of sodium arsenite and lead acetate in Wistar rats. Afr J Biomed Res 10:59–65

    Google Scholar 

  62. Eisenbach C, Sieg O, Stremmel W, Encke J, Merle U (2007) Diagnostic criteria for acute liver failure due to Wilson disease. World J Gastroenterol 13(11):1711–1714

    Article  PubMed  PubMed Central  Google Scholar 

  63. Kaniaris P, Fassoulaki A, Liarmakopoulou K, Dermitzakis E (1979) Serum cholinesterase levels in patients with cancer. Anesth Analg 58:82–84

    Article  CAS  PubMed  Google Scholar 

  64. Montenegro MF, Ruiz-Espejo F, Campoy FJ, Muñoz-Delgado E, de la Cadena MP, Cabezas-Herrera J, Vidal CJ (2006) Acetyl- and butyrylcholinesterase activities decrease in human colon adenocarcinoma. J Mol Neurosci 30(1–2):51–54

    Article  CAS  PubMed  Google Scholar 

  65. Patlolla AK, Tchounwou PB (2005) Serum acetyl cholinesterase as a biomarker of arsenic induced neurotoxicity in Sprague-Dawley rats. Int J Environ Res Public Health 2(1):80–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Geula C, Darvesh S (2004) Butyrylcholinesterase, cholinergic neurotransmission and the pathology of Alzheimer’s disease. Drugs Today (Barc) 40(8):711–721

    Article  CAS  Google Scholar 

  67. Flora SJ, Mittal M, Mishra D (2009) Co-exposure to arsenic and fluoride on oxidative stress, glutathione linked enzymes, biogenic amines and DNA damage in mouse brain. J Neurol Sci 285(1–2):198–205

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Ministry of Science and Technology, Government of People’s Republic of Bangladesh (39.009.006.01.00.049.2013-2014/BS/104), and the University of Rajshahi (300(6)-5/52/RABI/BINGAN (1)/2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahangir Alam Saud.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aktar, S., Jahan, M., Alam, S. et al. Individual and Combined Effects of Arsenic and Lead on Behavioral and Biochemical Changes in Mice. Biol Trace Elem Res 177, 288–296 (2017). https://doi.org/10.1007/s12011-016-0883-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-016-0883-0

Keywords

Navigation