Skip to main content

Taurine-Derived Compounds Produce Anxiolytic Effects in Rats Following Developmental Lead Exposure

  • Chapter
  • First Online:
Taurine 12

Abstract

Lead (Pb2+) is a developmental neurotoxicant that disrupts the GABA-shift and subsequently causes alterations in the brainā€™s excitation-to-inhibition (E/I) balance. Taurine is a well-established neuroprotective and inhibitory compound for regulating brain excitability. Since mechanistically taurine can facilitate neuronal inhibition through the GABA-AR, the present study examined the anxiolytic potential of taurine derivatives. Treatment groups consisted of the following developmental Pb2+-exposures: Control (0 ppm) and Perinatal (150 ppm or 1,000 ppm lead acetate in the drinking water). Rats were scheduled for behavioral tests between postnatal days (PND) 36ā€“45 with random drug assignments to either saline, taurine, or taurine-derived compound (TD-101, TD-102, or TD-103) to assess the ratsā€™ responsivity to each drug in mitigating the developmental Pb2+-exposure and anxiety-like behaviors through the GABAergic system. Long-Evans hooded rats were assessed using an open field (OF) test for preliminary locomotor assessment. Twenty-four hours later, the same rats were exposed to the elevated plus maze (EPM) and were given an i.p. injection of 43Ā mg/Kg of the saline, taurine, or TD drugs 15 min prior to testing. Each rat was tested using the triple-blind random assignment method for each drug condition. The OF data revealed that Control female rats had increased locomotor activity over Control male rats, and the Pb2+-exposed males and females had increased locomotor activity when compared to the Control male and female rats. However, in the EPM, the Control female rats exhibited more anxiety-like behaviors over Control male rats, and the Pb2+-exposed male and female rats showed selective responsivity to TD drugs when compared to taurine. For Pb2+-exposed males, TD-101 showed consistent recovery of anxiety-like behaviors similar to that of taurine regardless of Pb2+ dose, whereas in Pb2+-exposed females TD-101 and TD-103 showed greater anxiolytic responses in the EPM. The results from the present psychopharmacological study suggests that taurine and its derivatives are interesting drug candidates to explore sex-specific mechanisms and actions of taurine and the associated GABAergic receptor properties by which these compounds alleviate anxiety as a potential behavioral pharmacotherapy for neurodevelopmental Pb2+ exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Pb2+:

lead

TD:

taurine derivatives

E/I:

excitation-to-inhibition

BLL:

blood lead levels

GAD:

glutamic acid decarboxylase

PND:

postnatal day

EDTA:

ethylenediaminetetraacetic acid

ASV:

anodic stripping voltammetry

OF:

open field

EPM:

elevated plus maze

OTC:

open-to-closed ratio

References

  • Barbosa F Jr, Tanus-Santos JE, Gerlach RF, Parsons PJ (2005) A critical review of biomarkers used for monitoring human exposure to lead: advantages, limitations, and future needs. Environ Health Perspect 113(12):1669ā€“1674

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Bellinger DC (2008) Very low lead exposures and childrenā€™s neurodevelopment. Curr Opin Pediatr 20(2):172ā€“177

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Bellinger DC, Dietrich KN (1994) Low-level lead exposure and cognitive function in children. Pediatr Ann 23:600ā€“605

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Bellinger DC, Needleman HL (2003) Intellectual impairment and blood lead levels. N Engl J Med 349:500ā€“502

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Bellinger DC, Stiles KM, Needleman HL (1992) Low-level lead exposure, intelligence and academic achievement: a long-term follow-up study. Pediatrics 90:855ā€“861

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Ben-Ari Y (2002) Excitatory actions of GABA during development: the nature or the nurture. Nat Rev Neurosci 9:728ā€“739

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Ben-Ari Y, Khalilov I, Kahle KT, Cherubini E (2012) The GABA excitatory/inhibitory shift in brain maturation and neurological disorders. Neuroscientist 18(5):467ā€“486

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Bergdhal IA, Skerfving S (2008) Biomonitoring of lead exposures--alternatives to blood. J Toxicol Environ Health (Part A) 71(18):1235ā€“1243

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Bianchi L, Colivicchi MA, Ballini C, Fattori M, Venturi C, Giovannini MG, Healy J, Tipton KF, Della Corte L (2006) Taurine, taurine analogues, and taurine functions: overview. Adv Exp Med Biol 583:443ā€“448

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Bleecker ML, Lingren KN, Ford PD (1997) Differential contribution of current and cumulative indices of lead dose to neuropsychological performance by age. Neurology 48(3):639ā€“645

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Canfield RL, Henderson CR Jr, Cory-Slechta DA, Cox C, Jusko TA, Lanphear BP (2003) Intellectual impairment in children with blood lead concentrations below 10 microgram per deciliter. N Engl J Med 348:1517ā€“1526

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Caravanos J, Carrelli J, Dowling R, Pavilonis B, Ericson B, Fuller R (2016) Burden of disease resulting from lead exposure at toxic waste sites in Argentina, Mexico and Uruguay. Environ Health 15(72):1ā€“9

    Google ScholarĀ 

  • Chen A, Dietrich KN, Huo X, Ho SM (2011) Developmental neurotoxicants in E-waste: an emerging health concern. Environ Health Perspect 119(4):431ā€“438

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Chung MA, Malatesta P, Bosquesi PL, Yamasaki PR, dos Santos JL, Vizioli EO (2012) Advances in drug design based on the amino acid approach: taurine analogues for the treatment of CNS diseases. Pharmaceuticals 5(10):1128ā€“1146

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Cruz GB, Vasquez MA, CabaƱaas E, Joseph JN, Skeen JC, Lynch KP, Ahmed I, Khairi EB, Bonitto JR, Clarke EG, Rubi S, Hameed N, Kaur S, Mathew N, Dacius TF Jr, Jose TJ, Handford G, Wolfe S, Feher A, Tidwell K, Tobin J, Ugalde E, Fee S, Kent MH, Choe A, Gillenwater K, Hindi B, Pilout S, Natale NR, Domahoski N, Jacob JC, Lambert KG, Neuwirth LS (2022) Developmental lead exposure in rats causes sex-dependent changes in neurobiological and anxiety-like behaviors that are improved by taurine co-treatment. Adv Exp Med Biol 1370:461ā€“479

    Google ScholarĀ 

  • Dang D, Lively M, Jalan A (2021) Lead poisoning and racism in the time of COVID-19. WMJ 120(Suppl 1):S59ā€“S60

    PubMedĀ  Google ScholarĀ 

  • Della Corte L, Crichton RR, Duburs G, Nolan K, Tipton KF, Tirzitis G, Ward RJ (2002) The use of taurine analogues to investigate taurine functions and their potential therapeutic applications. Amino Acids 23:367ā€“379

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Dietrich KN, Ware JH, Salganik M, Radcliffe J, Rogan WJ, Rhoads GG, Fay ME, Davoli CT, Denckla MB, Bornschein RL, Schwarz D, Dockkery DW, Adubato S, Jones RL (2004) Effect of chelation therapy on the neuropsychological and behavioral development of lead-exposed children after school entry. Pediatrics 114(1):19ā€“26

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Dowling R, Caravanos J, Grigsby P, Rivera A, Ericson B, Amoyyaw-Osei Y, Akuffo B, Fuller R (2016) Estimating the prevalence of toxic waste sites in low- and middle-income countries. Ann Glob Health 82(5):700ā€“710

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Eid A, Zawia N (2016) Consequences of lead exposure, and its emerging role as an epigenetic modifier in the aging brain. Neurotoxicology 56:254ā€“261

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • El Idrissi A (2008) Taurine improves learning and retention in aged mice. Neurosci Lett 436:19ā€“22

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • El Idrissi A, Lā€™Amoreaux WJ (2008) Selective resistance of taurine-fed mice to isoniazied-potentiated seizures: in vivo functional test for the activity of glutamic acid decarboxylase. Neuroscience 156(3):693ā€“699

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • El Idrissi A, Messing J, Scalia J, Trenkner E (2003) Prevention of epileptic seizures through taurine. Adv Exp Med Biol 526:515ā€“525

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • El Idrissi A, Boukarrou L, Heany W, Malliaros G, Sangdee C, Neuwirth LS (2009) Effects of taurine on anxiety-like and locomotor behavior of mice. In: Azuma J, Schaffer SW, Ito T (eds) Taurine 7: Taurine for the future healthcare. Springer, New York, pp 207ā€“215

    ChapterĀ  Google ScholarĀ 

  • El Idrissi A, Neuwirth LS, Lā€™Amoreaux WJ (2010) Taurine regulation of short-term synaptic plasticity in Fragile X mice. J Biomed Sci 17(1):S15

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  • El Idrissi A, Iskra BS, Neuwirth LS (2012) Neurobehavioral effects of taurine in Fragile X Syndrome. In: El Idrissi A, Lā€™Amoreaux WJ (eds) Taurine 8: Taurine in health and disease. Springer, New York, pp 306ā€“345

    Google ScholarĀ 

  • El Idrissi A, Okeke E, Yan X, Sidime F, Neuwirth LS (2013) Taurine regulation of blood pressure and vasoactivity. Adv Exp Med Biol 775:407ā€“425

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Eneh OC, Agunwamba JC (2011) Managing hazardous wastes in Africa: recyclability of lead from E-waste materials. J Appl Sci 11(17):3215ā€“3220

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Frosini M, Sesti C, Dragoin S, Valoti M, Palmi M, Dixon HBF, Machetti F, Sgaragli G (2003) Interactions of taurine and structurally related analogues with the GABAergic system and taurine binding sites of rabbit brain. Br J Pharmacol 138(6):1163ā€“1171

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Frosini M, Ricci L, Saponara S, Palmi M, Valoti M, Sgaragli G (2006) GABA-mediated effects of some taurine derivatives injected i.c.v. on rabbit rectal temperature and gross motor behavior. Amino Acids 30:233ā€“242

    Google ScholarĀ 

  • Gilbert SG, Weiss B (2006) A rationale for lowering the blood lead action level from 10 to 2 Ī¼g/dL. Neurotoxicology 27(5):693ā€“701

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Grandjean P, Hertz KT (2015) Trace elements as paradigms of developmental neurotoxicants: lead, methylmercury, and arsenic. J Trace Elem Med Biol 31:130ā€“134

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Guo Y, Huo X, Li Y, Wu K, Liu J, Huang J, Zheng G, Xiao Q, Yang H, Wang Y, Chen A, Xu X (2010) Monitoring of lead, cadmium, chromium and nickel in placenta from an E-waste recycling town in China. Sci Total Environ 408(16):3113ā€“3117

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Gupta RC (2006) Taurine analogues and taurine transport: therapeutics advantages. Adv Exp Med Biol 583:449ā€“467

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Gupta RC, Kim SJ (2003) Taurine, analogues and bone: a growing relationship. Adv Exp Med Biol 526:323ā€“328

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Gupta RC, Win T, Bittner S (2005) Taurine analogues; a new class of therapeutics: retrospect and prospects. Curr Med Chem 12(17):2021ā€“2039

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Hernberg S (2000) Lead poisoning in a historical perspective. Am J Ind 38(3):244ā€“254

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Hu H, Shine J, Wright RO (2007) The challenge posed to childrenā€™s health by mixtures of toxic waste: the Tar Creek superfund site as a case-study. Pediatr Clin N Am 54(1):155ā€“175

    ArticleĀ  Google ScholarĀ 

  • Huo X, Peng L, Xu X, Zheng L, Qui B, Qi Z, Zhang B, Han D, Pio Z (2007) Elevated blood lead levels of children in Guiyu, and electronic waste recycling town in China. Environ Health Perspect 115(7):1113ā€“1117

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Jiang W, Zhang X, Li J (1956) Effects of taurine on the neurobehavioral development of rats exposed to low-level lead. Acta Nutrimenta Sinica 0(01)

    Google ScholarĀ 

  • Johnston JE, Hricko A (2017) Industrial lead poisoning in Los Angeles: anatomy of a public health failure. Environ Justice 10(5):162ā€“167

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Krieg EF Jr, Chrislip DW, Crespo CJ, Brightwell WS, Ehrenberg RL, Otto DA (2005) The relationship between blood lead levels and neurobehavioral test performance in NHANES III and related occupational studies. Public Health Rep 120(3):240ā€“251

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Laidlaw MAS, Taylor MP (2011) Potential for childhood lead poisoning in the inner cities of Australia due to exposure to lead in soil dust. Environ Pollut 159(1):1ā€“9

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Lā€™Amoreaux WJ, Marsillo A, El Idrissi A (2010) Pharmacological characterization of GABAA receptors in taurine-fed mice. J Biomed Sci 17(Suppl 1):S14

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  • Lanphear BP, Dietrich K, Auinger P, Cox C (2000) Cognitive deficits associated with blood lead concentrations < 10 microg/dL in US children and adolescents. Public Health Rep 115:521ā€“529

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Lanphear BP, Hornung R, Khoury J, Yolton K, Baghurst P, Bellinger DC, Canfield RL, Dietrich KN, Bornschein R, Greene T, Rothenberg SJ, Needleman HL, Schnaas L, Wasserman G, Graziano J, Roberts R (2005) Low-level environmental lead exposure and childrenā€™s intellectual function: an international pooled analysis. Environ Health Perspect 113(7):894ā€“899

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Leung AOW, Duzgoren-Aydin NS, Cheung KC, Wong MH (2008) Heavy metals concentrations of surface dust from E-waste recycling and its human health implications in southeast China. Environ Sci Technol 42(7):2674ā€“2680

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Lidsky TI, Schneider JS (2003) Lead neurotoxicity in children: basic mechanisms and clinical correlates. Brain 126(1):5ā€“19

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Lidsky TI, Schneider JS (2006) Adverse effects of childhood lead poisoning: the clinical neuropsychological perspective. Environ Res 100:284ā€“293

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Li XM, Gu Y, She JQ, Zhu DM, Niu ZD, Wang M, Chen JT, Sun LG, Ruan DY (2006) Lead inhibited N-methyl-D-aspartate receptor-independent long-term potentiation involved ryanodine-sensitive calcium stores in rat hippocampal area CA1. Neuroscience 139(2):463ā€“473. https://doi.org/10.1016/j.neuroscience.2005.12.033

  • Madura JD, Lombardini JB, Briggs JM, Minor DL, Wierzbicki A (1997) Physical and structural properties of taurine and taurine analogues. Amino Acids 13:131ā€“139

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Mehrpour O, Karrari P, Abdollahi M (2012) Chronic lead poisoning in Iran; a silent disease. Daru 20(1):8

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Messiha FS (1979) Taurine, analogues and ethanol elicited responses. Brain Res Bull 4(5):603ā€“607

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Meyer PA, Brown MJ, Falk H (2008) Global approach to reducing lead exposure and poisoning. Mutat Res 659(1ā€“2):166ā€“175

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Needleman HL (2004) Lead poisoning. Ann Rev Med 55:209ā€“222

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Needleman HL, Gatsonis CA (1990) Low-level lead exposure and the IQ of children. a meta-analysis of modern studies. J Am Med Assoc 263:673ā€“678

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Neuwirth LS (2014) The characterization of Pb2+ toxicity in rat neural development: an assessment of Pb2+ effects on the GABA-shift in neural networks and implications for learning and memory disruption. UMI Proquest Dissertation & Theses 3612469. DAI/B 75-06(E)

    Google ScholarĀ 

  • Neuwirth LS (2018) Resurgent lead poisoning and renewed public attention towards environmental social justice issues: a review of current efforts and call to revitalize primary and secondary lead poisoning prevention for pregnant women, lactating mothers, and children within the U.S. Int J Occup Environ Health 24(3-4):86ā€“100

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Neuwirth LS, El Idrissi A (2021) Developmental Pb2+-exposure alters KCC2 and VSCC-Ɵ3 subunit expression patterns in the postnatal rat brain and cerebellar granule cell cultures: Implications for disrupted GABA-shifts resulting from neurotoxicant exposures. Psychol Neurosci 14(1):49ā€“72

    ArticleĀ  Google ScholarĀ 

  • Neuwirth LS, Emenike BU (2021) Compositions and methods of treating a subject with taurine and derivatives thereof. US Patent App. 16/880,796,2021

    Google ScholarĀ 

  • Neuwirth LS, Kolb B (2020) Considerations for advancing a well integrated comparative psychology research approach directed toward improving our understanding of fronto-executive functions. Psychol Neurosci 13(3):473

    ArticleĀ  Google ScholarĀ 

  • Neuwirth LS, Volpe NP, El Idrissi A (2013) Taurine effects on emotional learning and memory in aged mice: neurochemical alterations and differentiation in auditory cued fear and context conditioning. Adv Exp Med Biol 775:195ā€“214

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Neuwirth LS, Volpe NP, Ng S, Marsillo A, Corwin C, Madan N, Ferraro AM, El Idrissi A (2015) Taurine recovers mice emotional learning and memory disruptions associated with Fragile X Syndrome in context fear and auditory cured-conditioning. Adv Exp Med Biol 803:425ā€“438

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Neuwirth LS, Volpe NP, Corwin C, Ng S, Madan N, Ferraro AM, Furman Y, El Idrissi A (2017) Taurine recovery of learning deficits induced by developmental Pb2+ exposure. Adv Exp Med Biol 975:39ā€“55

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Neuwirth LS, Phillips GR, El Idrissi A (2018) Perinatal Pb2+ exposure alters the expression of genes related to the neurodevelopmental GABA-shift in postnatal rats. J Biomed Sci 25(45):1ā€“11

    Google ScholarĀ 

  • Neuwirth LS, Emenike BU, Barrera ED, Hameed N, Rubi S, Dacius TF Jr, Skeen JC, Bonitto JR, Khairi E, Iqbal A, Ahmed I, Jose TJ, Lynch KP, Khan M, Alvira AL, Mathew N, Kaur S, Masood S, Tranquilee B, Thiruverkadu V (2019a) Assessing the anxiolytic properties of taurine-derived compounds in rats following developmental lead exposure: a neurodevelopmental and behavioral pharmacological pilot study. Adv Exp Med Biol 1155:801ā€“819

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Neuwirth LS, Kim Y, Barrera ED, Jo C, Chrisphonte JM, Hameed N, Rubi S, Dacius TF Jr, Skeen J, Bonitto JR, Khari E, Iqbal A, Ahmed I, Masood S, Tranquille B, Thiruverkadu V (2019b) Early neurodevelopmental exposure to low lead levels induces frontoexecutive dysfunctions that are recovered by the co-treatment of taurine in the rat attention set-shift test: Implications for taurine as a psychopharmacotherapy against neurotoxicants. Adv Exp Med Biol 1155:821ā€“846

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Neuwirth LS, Masood S, Anderson DW, Schneider JS (2019c) The attention set-shifting test is sensitive for revealing sex-based impairments in executive functions following developmental lead exposure in rats. Behav Brain Res 366:126ā€“134

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Neuwirth LS, Lopez OE, Schneider JS, Markowitz ME (2020) Low-level lead exposure impairs fronto-executive functions: a call to update the DSM-5 with lead poisoning as a neurodevelopmental disorder. Psychol Neurosci 13(3):229ā€“325

    Google ScholarĀ 

  • Oā€™Connor D, Hou D, Ok YS, Lanphear BP (2020) The effects of iniquitous lead exposure on health. Nat Sustain 3:77ā€“79

    ArticleĀ  Google ScholarĀ 

  • Palmi M, Davey G, Tipton KF, Meini A (2006) Taurine, taurine analogues, and mitochondrial function and dysfunctions. Adv Exp Med 583:469ā€“479

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Rau T, UrzĆŗa S, Reyes L (2015) Early exposure to hazardous waste and academic achievement: evidence from a case of environmental negligence. J Assoc Environ Resour Econ 2(4):527ā€“563

    Google ScholarĀ 

  • Rentschler G, Broberg K, Lundh T, Skerfving S (2012) Long-term lead elimination from plasma and whole blood after poisoning. Int Arch Occup Environ Health 85(3):311ā€“316

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Rogan WJ, Dietrich KN, Ware JH, Dockery DW, Salganki M, Radcliffe J, Jones RL, Ragan NB, Chisolm JJ Jr, Rhoads GG (2001) The effect of chelation therapy with succimer on neuropsychological development in children exposed to lead. N Engl J Med 344:1421ā€“1426

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Rosen JF, Mushak P (2001) Primary prevention of childhood lead poisoning ā€“ the only solution. N Engl J Med 344(19):1470ā€“1471

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Santora A, Neuwirth LS, Lā€™Amoreaux WJ, El Idrissi A (2013) The effects of chronic taurine supplementation on motor learning. Adv Exp Med Biol 775:177ā€“185

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • SchĆ¼tz A, Bergdhal IA, Ekholm A, Skerfving S (1996) Measurement by ICP-MS of lead in plasma and whole blood of lead workers and controls. Occup Environ Med 53(11):736ā€“740

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Schwartz J (1994) Low-level lead exposure and childrenā€™s IQ: a meta-analysis and search for a threshold. Environ Res 65:42ā€“55

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Shen CH, Lempert E, Butt I, Neuwirth LS, Yan X, El Idrissi A (2013) Changes in gene expression at inhibitory synapses in response to taurine treatment. Adv Exp Med Biol 775:187ā€“194

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Shinkuma T, Huong NTM (2009) The flow of E-waste material in the Asian region and a reconsideration of international trade policies on E-Waste. Environ Impact Assess Rev 29(1):25ā€“31

    ArticleĀ  Google ScholarĀ 

  • Sorensen LC, Fox AM, Jung H, Martin EG (2018) Lead exposure and academic achievement: evidence from childhood lead poisoning prevention efforts. J Popul Econ 32:179ā€“218

    ArticleĀ  Google ScholarĀ 

  • Tait DS, Bowman EM, Neuwirth LS, Brown VJ (2018) Assessment of intradimensional/extradimensional attentional set-shifting in rats. Neurosci Biobehav Rev 89:72ā€“84

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Tandon SK, Chatterjee M, Bhargva A, Shukla V, Bihari SV (2001) Lead poisoning in Indian silver refiners. Sci Total Environ 281(1-3):177ā€“182

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Taylor MP, Schniering CA, Lanphear BP, Jones AL (2011) Lessons learned on lead poisoning in children: one-hundred years on from Turnerā€™s declaration. J Paediatr Child Health 47(12):849ā€“856

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • U.S. Department of Health and Human Services (2007) Public health service agency for toxic substances and disease registry. http://www.atsdr.cdc.gov/toxprofiles/tp13.pdf. Accessed 28 July 2021

  • Ujihara H, Albuquerque EX (1992) Developmental change of the inhibition by lead of NMDA-activated currents in cultured hippocampal neurons. J Pharmacol Exp Ther 263(2):868ā€“875

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Vasquez MA, Cruz GB, CabaƱas E, Joseph JN, Mian M, Madhira SKV, Akintunde CA, Clarke EG, Skeen JC, Bonitto JR, Khairi EB, Lynch KP, Mekawy NH, El Idrissi A, Kim Y, Emenike B, Neuwirth LS (2022) In-vivo sex-dependent effects of perinatal Pb2+-exposure on pilocarpine-induced seizure susceptibility and taurine neuropharmacology. Adv Exp Med Biol 1370:481ā€“496

    Google ScholarĀ 

  • Walf AA, Frye CA (2007) The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat Protoc 2(2):322ā€“328

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Ward R, Cirkovic-Vellichovia T, Ledeque F, Tirizitis G, Dubars G, Datla K, Dexter D, Heushling P, Crichton R (2006) Neuroprotection by taurine and taurine analogues. Adv Exp Med 583:299ā€“306

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Wong VCN, Ng THK, Yeung CY (1991) Electrophysiologic study in acute lead poisoning. Pediatr Neurol 7(2):133ā€“136

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Yan CH, Xu J, Shen XM (2013) Childhood lead poisoning in China: challenges and opportunities. Environ Health Perspect 121(10):A294ā€“A295

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Yang Y, Lu XS, Li DL, Yu YJ (2013) Effects of environmental lead pollution on blood lead and sex hormone levels among occupationally exposed group in an E-waste dismantling area. Biomed Environ Sci 26(6):474ā€“484

    PubMedĀ  Google ScholarĀ 

  • Yu SS, Wang M, Li XM, Chen WH, Chen JT, Wang HL, Ruan DY (2007) Influences of different developmental periods of taurine supplements on synaptic plasticity in hippocampal CA1 area of rats following prenatal and perinatal lead exposure. BMC Dev Biol 7(51):1ā€“12 https://doi.org/10.1186/1471-213X-7-51

  • Zhang N, Baker HW, Tufts M, Raymond RE, Salihu H, Elliot MR (2013) Early childhood lead exposure and academic achievement: evidence from Detroit Public Schools, 2008-2010. Am J Public Health 103(3):e72ā€“e77

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Zhang Y, Oā€™Connor D, Xu W, Hou D (2020) Blood lead levels among Chinese children: the shifting influence of industry, traffic, and e-waste over three decades. Environ Int 135:105379

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Zheng L, Wu K, Yan L, Zongli Q, Han D, Zhang B, Gu C, Chen G, Liu J, Chen S, Xu X, Huo X (2008) Blood lead and cadmium levels and relevant factors among children from an E-waste recycling town in China. Environ Res 108(1):15ā€“20

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Zhu DM, Wang M, She JQ, Yu K, Ruan DY (2005) Protection by taurine supplemented diet from lead-induced deficits of long-term potentiation/depotentiation in dentate gyrus of rats in vivo. Neuroscience 134(1):215ā€“224

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Zhu W, Cruz GB, Ayaz Z, Joseph JN, Boby A, Cadet P, Neuwirth LS (2022) Influences of taurine pharmacodynamics and sex on active avoidance learning and memory. Adv Exp Med Biol 1370:381ā€“393

    Google ScholarĀ 

Download references

Acknowledgments

This study was supported by a SUNY Old Westbury Faculty Development grant awarded to L.S.N. We would like to thank the co-directors of the SUNY Old Westbury Collegiate-Science Technology Entry Program (C-STEP) Dr. Patrick Cadet and Mrs. Monique Clark-Ciceron for supporting underrepresented minority (URM) research students. The following URM students were supported by the C-STEP program: GB.C., E.C., M.A.V., E.G.C., E.D.B., N.H., S.R., T.F.D. Jr., J.C.S., J.R.B., E.B.K., A.I., I.S., T.J.J., K.P.L., A.A., and B.T. Lastly, we would like to thank the Biology, Chemistry and Physics Department, and the SUNY-Neuroscience Research Institute for sharing resources and space allocations to conduct this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenz S. Neuwirth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Neuwirth, L.S. et al. (2022). Taurine-Derived Compounds Produce Anxiolytic Effects in Rats Following Developmental Lead Exposure. In: Schaffer, S.W., El Idrissi, A., Murakami, S. (eds) Taurine 12. Advances in Experimental Medicine and Biology, vol 1370. Springer, Cham. https://doi.org/10.1007/978-3-030-93337-1_42

Download citation

Publish with us

Policies and ethics