Skip to main content
Log in

Layer-by-layer preparation and characterization of recyclable nanocomposite (CoxNi1−xFe2O4; X = 0.9/SiO2/TiO2)

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Titanium dioxide (TiO2) nanocomposites have been extensively employed in many fundamental optoelectronic and photocatalytic applications due to their outstanding optical, electronic and chemical properties. In the present work, we introduce a simple layer-by-layer approach to design a magnetic TiO2 nanocomposite that could be easily recycled using an external magnetic field without affecting its quantum efficiency. The crystallinity, size, surface area, stability, morphology, purity and other optical, thermal and magnetic properties of the composite have been investigated. Surface topology, thickness and thermal conduction were also demonstrated by AC conductivity measurements at a specific temperature (55 °C). Our results revealed that the prepared composite has a semi-spherical concentric shape with an average size of about (123.4 nm), surface area of (46.13 m2/g) and zeta potential of (− 24.3 mV) as confirmed by HRTEM, surface area analyzer and zeta potential measurements. TGA and DSC analysis recorded the thermal stability of the composite up to (500 °C) while a band gap of about (3.35 eV) has been calculated. VSM analysis showed that the composite has good magnetic properties. Atomic force microscopy recorded a surface roughness of the composite of about (125 nm) while the average thickness was approximately (10.3 nm). Significant responses of the capacitance–voltage profiles in the employed Preisach model, have been also recorded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. J. Rotmans, Methods for IA: the challenges and opportunities ahead. Environ Model Assess 3(3), 155–179 (1998)

    Article  Google Scholar 

  2. G.A. Olah, A. Goeppert, G.S. Prakash, Beyond Oil and Gas: The Methanol Economy (Wiley, Weinheim, 2011)

    Google Scholar 

  3. T.D. Murschell, Measurements of Current-Use Pesticides and Oxidation Products Using Chemical Ionization Mass Spectrometry (Colorado State University, Fort Collins, 2018)

    Google Scholar 

  4. J.B. Goldsteen, Danger All Around: Waste Storage Crisis on the Texas and Louisiana Gulf Coast (University of Texas Press, Austin, 2010)

    Google Scholar 

  5. D.R. Boyd, Cleaner, Greener, Healthier: A Prescription for Stronger Canadian Environmental Laws and Policies (UBC Press, Vancouver, 2015)

    Google Scholar 

  6. N.P. Cheremisinoff, Handbook of Pollution Prevention Practices (CRC Press, Boca Raton, 2001)

    Google Scholar 

  7. D. Ponnamma, M.A.A. Al-Maadeed, 3D architectures of titania nanotubes and graphene with efficient nanosynergy for supercapacitors. Mater. Des. 117, 203–212 (2017)

    Article  CAS  Google Scholar 

  8. D. Thomas et al., Highly selective gas sensors from photo-activated ZnO/PANI thin films synthesized by mSILAR. Synth. Met. 232, 123–130 (2017)

    Article  CAS  Google Scholar 

  9. A. Hezam et al., Direct Z-scheme Cs2O–Bi2O3–ZnO heterostructures for photocatalytic overall water splitting. J. Mater. Chem. A 6(43), 21379–21388 (2018)

    Article  CAS  Google Scholar 

  10. A. Hezam et al., Direct Z-scheme Cs2O–Bi2O3–ZnO heterostructures as efficient sunlight-driven photocatalysts. ACS Omega 3(9), 12260–12269 (2018)

    Article  CAS  Google Scholar 

  11. H. Parangusan et al., Nanoflower-like yttrium-doped ZnO photocatalyst for the degradation of methylene blue dye. Photochem. Photobiol. 94(2), 237–246 (2018)

    Article  CAS  Google Scholar 

  12. S. Shibli et al., Effect of phosphorus on controlling and enhancing electrocatalytic performance of Ni–P–TiO2–MnO2 coatings. J. Electroanal. Chem. 826, 104–116 (2018)

    Article  CAS  Google Scholar 

  13. D. Thomas et al., Microtron irradiation induced tuning of band gap and photoresponse of Al-ZnO thin films synthesized by mSILAR. J. Electron. Mater. 45(10), 4847–4853 (2016)

    Article  CAS  Google Scholar 

  14. C. Han et al., Innovative visible light-activated sulfur doped TiO2 films for water treatment. Appl. Catal. B 107(1–2), 77–87 (2011)

    Article  CAS  Google Scholar 

  15. R. Yuan et al., Surface chlorination of TiO2-based photocatalysts: a way to remarkably improve photocatalytic activity in both UV and visible region. ACS Catal. 1(3), 200–206 (2011)

    Article  CAS  Google Scholar 

  16. S. Parastar et al., Application of Ag-doped TiO2 nanoparticle prepared by photodeposition method for nitrate photocatalytic removal from aqueous solutions. Desalin. Water Treat. 51(37–39), 7137–7144 (2013)

    Article  CAS  Google Scholar 

  17. N. Zhang et al., Synthesis of M@TiO2 (M = Au, Pd, Pt) core–shell nanocomposites with tunable photoreactivity. J. Phys. Chem. C 115(18), 9136–9145 (2011)

    Article  CAS  Google Scholar 

  18. M.H.A. Kodous et al., C-dots dispersed macro-mesoporous TiO2 phtocatalyst for effective waste water treatment. Charact Appl. Nanomater. 1(2) (2018)

  19. S. Feizpoor, A. Habibi-Yangjeh, K. Yubuta, Integration of carbon dots and polyaniline with TiO2 nanoparticles: substantially enhanced photocatalytic activity to removal various pollutants under visible light. J. Photochem. Photobiol. A 367, 94–104 (2018)

    Article  CAS  Google Scholar 

  20. Q. Xiang, J. Yu, M. Jaroniec, Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. J. Am. Chem. Soc. 134(15), 6575–6578 (2012)

    Article  CAS  Google Scholar 

  21. T. Peng et al., Hydrothermal preparation of multiwalled carbon nanotubes (MWCNTs)/CdS nanocomposite and its efficient photocatalytic hydrogen production under visible light irradiation. Energy Fuels 25(5), 2203–2210 (2011)

    Article  CAS  Google Scholar 

  22. L.K. Limbach et al., Removal of oxide nanoparticles in a model wastewater treatment plant: influence of agglomeration and surfactants on clearing efficiency. Environ. Sci. Technol. 42(15), 5828–5833 (2008)

    Article  CAS  Google Scholar 

  23. A. Weir et al., Titanium dioxide nanoparticles in food and personal care products. Environ. Sci. Technol. 46(4), 2242–2250 (2012)

    Article  CAS  Google Scholar 

  24. E. Lombi et al., Fate of zinc oxide nanoparticles during anaerobic digestion of wastewater and post-treatment processing of sewage sludge. Environ. Sci. Technol. 46(16), 9089–9096 (2012)

    Article  CAS  Google Scholar 

  25. Y. Shen et al., Preparation and application of magnetic Fe3O4 nanoparticles for wastewater purification. Sep. Purif. Technol. 68(3), 312–319 (2009)

    Article  CAS  Google Scholar 

  26. C.-J.M. Chin, P.-W. Chen, L.-J. Wang, Removal of nanoparticles from CMP wastewater by magnetic seeding aggregation. Chemosphere 63(10), 1809–1813 (2006)

    Article  CAS  Google Scholar 

  27. A. Meidanchi, O. Akhavan, Superparamagnetic zinc ferrite spinel–graphene nanostructures for fast wastewater purification. Carbon 69, 230–238 (2014)

    Article  CAS  Google Scholar 

  28. S. Mandal et al., Photocatalytic and antimicrobial activities of zinc ferrite nanoparticles synthesized through soft chemical route: a magnetically recyclable catalyst for water/wastewater treatment. J. Environ. Chem. Eng. 4(3), 2706–2712 (2016)

    Article  CAS  Google Scholar 

  29. D. Beydoun et al., Occurrence and prevention of photodissolution at the phase junction of magnetite and titanium dioxide. J. Mol. Catal. A 180(1–2), 193–200 (2002)

    Article  CAS  Google Scholar 

  30. A.C. Wright, Diffraction studies of glass structure. J. Non-Cryst. Solids 123(1–3), 129–148 (1990)

    Article  CAS  Google Scholar 

  31. R. Mozzi, B. Warren, The structure of vitreous silica. J. Appl. Crystallogr. 2(4), 164–172 (1969)

    Article  CAS  Google Scholar 

  32. Q. Mei, C. Benmore, J. Weber, Structure of liquid SiO2: a measurement by high-energy X-ray diffraction. Phys. Rev. Lett. 98(5), 057802 (2007)

    Article  CAS  Google Scholar 

  33. Q. Mei et al., Intermediate range order in vitreous silica from a partial structure factor analysis. Phys. Rev. B 78(14), 144204 (2008)

    Article  CAS  Google Scholar 

  34. T.P. Almeida et al., Hydrothermal synthesis of mixed cobalt-nickel ferrite nanoparticles. J. Phys.: Conf. Ser. 371, 012074 (2012)

    Google Scholar 

  35. J. Wagner, T. Autenrieth, R. Hempelmann, Core shell particles consisting of cobalt ferrite and silica as model ferrofluids [CoFe2O4–SiO2 core shell particles]. J. Magn. Magn. Mater. 252, 4–6 (2002)

    Article  CAS  Google Scholar 

  36. D. Raoufi, T. Raoufi, The effect of heat treatment on the physical properties of sol–gel derived ZnO thin films. Appl. Surf. Sci. 255(11), 5812–5817 (2009)

    Article  CAS  Google Scholar 

  37. X. Huang et al., Synthesis of polyaniline-modified Fe3O4/SiO2/TiO2 composite microspheres and their photocatalytic application. Mater. Lett. 65(19–20), 2887–2890 (2011)

    Article  CAS  Google Scholar 

  38. X. Li et al., Fe3O4@ SiO2@ TiO2@ Pt hierarchical core–shell microspheres: controlled synthesis, enhanced degradation system, and rapid magnetic separation to recycle. Cryst. Growth Des. 14(11), 5506–5511 (2014)

    Article  CAS  Google Scholar 

  39. R. Wang et al., Preparation and photocatalytic activity of magnetic Fe3O4/SiO2/TiO2 composites. Adv. Mater. Sci. Eng. (2012). https://doi.org/10.1155/2012/409379

    Article  Google Scholar 

  40. Y. Fan et al., Synthesis and properties of Fe3O4/SiO2/TiO2 nanocomposites by hydrothermal synthetic method. Mater. Sci. Semicond. Process. 15(5), 582–585 (2012)

    Article  CAS  Google Scholar 

  41. S. Paul Raj, Mineralization of azo dye using combined photo-Fenton and photocatalytic processes under visible Light. J. Catal. (2013). https://doi.org/10.1155/2013/104019

    Article  Google Scholar 

  42. P. Dobrowolska et al., Application of Turkevich method for gold nanoparticles synthesis to fabrication of SiO2@Au and TiO2@Au core-shell nanostructures. Materials 8(6), 2849–2862 (2015)

    Article  CAS  Google Scholar 

  43. M. Mushtaq et al., Synthesis, structural and biological studies of cobalt ferrite nanoparticles. Bulg. Chem. Commun. 48(3), 565–570 (2016)

    Google Scholar 

  44. S. Furukawa, T. Miyasato, Quantum size effects on the optical band gap of microcrystalline Si: H. Phys. Rev. B 38(8), 5726 (1988)

    Article  CAS  Google Scholar 

  45. K.S. Sing, R.T. Williams, Physisorption hysteresis loops and the characterization of nanoporous materials. Adsorpt. Sci. Technol. 22(10), 773–782 (2004)

    Article  CAS  Google Scholar 

  46. H. Adelkhani, M. Ghaemi, M. Ruzbehani, Evaluation of the porosity and the nano-structure morphology of MnO2 prepared by pulse current electrodeposition. Int. J. Electrochem. Sci. 6, 123–135 (2011)

    CAS  Google Scholar 

  47. W. Wang et al., Enhanced photocatalytic activity of hierarchical macro/mesoporous TiO2–graphene composites for photodegradation of acetone in air. Appl. Catal. B 119–120, 109–116 (2012)

    Article  CAS  Google Scholar 

  48. T.M. Riddick, Control of Colloid Stability Through Zeta Potential (Livingston Wynnewood, 1968)

    Google Scholar 

  49. A. Maira et al., Fourier transform infrared study of the performance of nanostructured TiO2 particles for the photocatalytic oxidation of gaseous toluene. J. Catal. 202(2), 413–420 (2001)

    Article  CAS  Google Scholar 

  50. B.G.T. Keerthana et al., Hydrothermal synthesis and characterization of TiO2 nanostructures prepared using different solvents. Mater. Lett. 220, 20–23 (2018)

    Article  CAS  Google Scholar 

  51. L. Alcaraz, J. Isasi, Synthesis and study of Y0.9Ln0.1VO4 nanophosphors and Y0.9Ln0.1VO4@SiO2 luminescent nanocomposites with Ln = Eu. Dy, Er. Ceram. Int. 43(6), 5311–5318 (2017)

    Article  CAS  Google Scholar 

  52. Q. Chang et al., Synthesis and properties of magnetic and luminescent Fe3O4/SiO2/Dye/SiO2 nanoparticles. J. Lumin. 128(12), 1890–1895 (2008)

    Article  CAS  Google Scholar 

  53. A.M. Donia et al., Effect of structural properties of acid dyes on their adsorption behaviour from aqueous solutions by amine modified silica. J. Hazard. Mater. 161(2–3), 1544–1550 (2009)

    Article  CAS  Google Scholar 

  54. P. Arévalo-Cid, J. Isasi, F. Martín-Hernández, Comparative study of core-shell nanostructures based on amino-functionalized Fe3O4@SiO2 and CoFe2O4@SiO2 nanocomposites. J. Alloys Compd. (2018). https://doi.org/10.1016/j.jallcom.2018.06.246

    Article  Google Scholar 

  55. A. Ditta et al., Structural, magnetic and spectral properties of Gd and Dy co-doped dielectrically modified Co-Ni (Ni0.4Co0.6Fe2O4) ferrites. Physica B 507, 27–34 (2017)

    Article  CAS  Google Scholar 

  56. M. Amer et al., Characterization and structural and magnetic studies of as-synthesized Fe2+ CrxFe(2–x)O4 nanoparticles. J. Magn. Magn. Mater. 439, 373–383 (2017)

    Article  CAS  Google Scholar 

  57. M. Amer et al., Structural and physical properties of the nano-crystalline Al-substituted Cr–Cu ferrite. J. Magn. Magn. Mater. 343, 286–292 (2013)

    Article  CAS  Google Scholar 

  58. R. Kadam et al., Phase evaluation of Li+ substituted CoFe2O4 nanoparticles, their characterizations and magnetic properties. J. Magn. Magn. Mater. 355, 70–75 (2014)

    Article  CAS  Google Scholar 

  59. A. Ghasemi, Compositional dependence of magnetization reversal mechanism, magnetic interaction and Curie temperature of Co1–xSrxFe2O4 spinel thin film. J. Alloys Compd. 645, 467–477 (2015)

    Article  CAS  Google Scholar 

  60. F.M. Mosallam et al., Biomolecules-mediated synthesis of selenium nanoparticles using Aspergillus oryzae fermented Lupin extract and gamma radiation for hindering the growth of some multidrug-resistant bacteria and pathogenic fungi. Microb. Pathogen. 122, 108–116 (2018)

    Article  CAS  Google Scholar 

  61. M.A. Maksoud et al., Synthesis and characterization of metals-substituted cobalt ferrite [MxCo(1-x)Fe2O4; (M = Zn, Cu and Mn; x = 0 and 0.5)] nanoparticles as antimicrobial agents and sensors for Anagrelide determination in biological samples. Mater. Sci. Eng. C 92, 644–656 (2018)

    Article  CAS  Google Scholar 

  62. A. Ashour et al., Antimicrobial activity of metal-substituted cobalt ferrite nanoparticles synthesized by sol–gel technique. Particuology 40, 141–151 (2018)

    Article  CAS  Google Scholar 

  63. A. Baraka et al., Synthesis of silver nanoparticles using natural pigments extracted from Alfalfa leaves and its use for antimicrobial activity. Chem. Pap. 71(11), 2271–2281 (2017)

    Article  CAS  Google Scholar 

  64. M.A. Maksoud et al., Tunable structures of copper substituted cobalt nanoferrites with prospective electrical and magnetic applications. J. Mater. Sci.: Mater. Electron. 30(5), 4908–4919 (2019)

    CAS  Google Scholar 

  65. M.A. Maksoud et al., Antibacterial, antibiofilm, and photocatalytic activities of metals-substituted spinel cobalt ferrite nanoparticles. Microb. Pathog. 127, 144–158 (2019)

    Article  CAS  Google Scholar 

  66. S. Singhal et al., Preparation and characterization of nanosize nickel-substituted cobalt ferrites (Co1–xNixFe2O4). J. Solid State Chem. 178(10), 3183–3189 (2005)

    Article  CAS  Google Scholar 

  67. J. Xiang et al., Electrospinning preparation, characterization and magnetic properties of cobalt–nickel ferrite (Co1–xNixFe2O4) nanofibers. J. Colloid Interface Sci. 376(1), 57–61 (2012)

    Article  CAS  Google Scholar 

  68. S.T. John, D.D. Klug, Y. Le Page, High-pressure densification of amorphous silica. Phys. Rev. B 46(10), 5933 (1992)

    Article  Google Scholar 

  69. D. Eder, A.H. Windle, Morphology control of CNT-TiO2 hybrid materials and rutile nanotubes. J. Mater. Chem. 18(17), 2036–2043 (2008)

    Article  CAS  Google Scholar 

  70. Z. Dai et al., Preparation of porphyrin sensitized three layers magnetic nanocomposite Fe3O4@SiO2@TiO2 as an efficient photocatalyst. Mater. Lett. 241, 239–242 (2019)

    Article  CAS  Google Scholar 

  71. R.K. Jammula et al., Strong interfacial polarization in ZnO decorated reduced-graphene oxide synthesized by molecular level mixing. Phys. Chem. Chem. Phys. 17(26), 17237–17245 (2015)

    Article  CAS  Google Scholar 

  72. D. Wang et al., Functionalized graphene–BaTiO3/ferroelectric polymer nanodielectric composites with high permittivity, low dielectric loss, and low percolation threshold. J. Mater. Chem. A 1(20), 6162–6168 (2013)

    Article  CAS  Google Scholar 

  73. K. Pal et al., Optical and electrical investigation of ZnO nano-wires array centre micro-flowers turn to hierarchical nano-rose structures. J. Nanosci. Nanotechnol. 15, 1–10 (2016)

    Google Scholar 

  74. A.K. Roy et al., Electrical properties and AC conductivity of (Bi0.5Na0.5)0.94 Ba0.06TiO3 ceramic. ISRN Ceram. (2012). https://doi.org/10.5402/2012/854831

    Article  Google Scholar 

  75. D.P. Almond, C. Bowen, Anomalous power law dispersions in ac conductivity and permittivity shown to be characteristics of microstructural electrical networks. Phys. Rev. Lett. 92(15), 157601 (2004)

    Article  CAS  Google Scholar 

  76. C. Bowen, D.P. Almond, Modelling the’universal’dielectric response in heterogeneous materials using microstructural electrical networks. Mater. Sci. Technol. 22(6), 719–724 (2006)

    Article  CAS  Google Scholar 

  77. M. Raghasudha, D. Ravinder, P. Veerasomaiah, Influence of Cr3+ ion on the dielectric properties of nano crystalline Mg-ferrites synthesized by citrate-gel method. Mater. Sci. Appl. 4(07), 432 (2013)

    CAS  Google Scholar 

  78. K. Pal et al., Influence of ZnO nanostructures in liquid crystal interfaces for bistable switching applications. Appl. Surf. Sci. 357, 1499–1510 (2015)

    Article  CAS  Google Scholar 

  79. K. Pal, M.A. Elkodous, M.L.N.M. Mohan, CdS nanowires encapsulated liquid crystal in-plane switching of LCD device. J. Mater. Sci.: Mater. Electron. 29(12), 10301–10310 (2018)

    CAS  Google Scholar 

  80. K. Pal et al., Soft, self-assembly liquid crystalline nanocomposite for superior switching. Electron. Mater. Lett. (2018). https://doi.org/10.1007/s13391-018-0098-y

    Article  Google Scholar 

  81. T. Thirugnanasambandan et al., Aggrandize efficiency of ultra-thin silicon solar cell via topical clustering of silver nanoparticles. Nano-struct Nano-objects 16, 224–233 (2018)

    Article  CAS  Google Scholar 

  82. S. Miller et al., Device modeling of ferroelectric capacitors. J. Appl. Phys. 68(12), 6463–6471 (1990)

    Article  Google Scholar 

  83. S. Miller et al., Modeling ferroelectric capacitor switching with asymmetric nonperiodic input signals and arbitrary initial conditions. J. Appl. Phys. 70(5), 2849–2860 (1991)

    Article  Google Scholar 

  84. P. Yang et al., Electrical properties of SrBi2Ta2O9 ferroelectric thin films at low temperature. Appl. Phys. Lett. 81(24), 4583–4585 (2002)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the technical support from Nile University, Egypt Egyptian Atomic Energy Authority and Bharath Institute of Higher Education and Research, Department of Nanotechnology, Chennai (India). The authors also appreciate the efforts exerted by Prof. Dr. Ahmed Radwan, Director of Research at Nile University, Egypt for providing us a friendly environment for research and the success of this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Abd Elkodous or K. Pal.

Ethics declarations

Conflict of interest

All the authors have declared that there is no potential conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elkodous, M.A., El-Sayyad, G.S., Mohamed, A.E. et al. Layer-by-layer preparation and characterization of recyclable nanocomposite (CoxNi1−xFe2O4; X = 0.9/SiO2/TiO2). J Mater Sci: Mater Electron 30, 8312–8328 (2019). https://doi.org/10.1007/s10854-019-01149-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01149-8

Navigation