Skip to main content
Log in

Interaction of Curcumin with Manganese May Compromise Metal and Neurotransmitter Homeostasis in the Hippocampus of Young Mice

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Manganese (Mn) exposure is related to industrial activities, where absorption by inhalation has high relevance. Manganism, a syndrome caused as a result of excessive accumulation of Mn in the central nervous system, has numerous symptoms similar to those seen in idiopathic Parkinson disease (IPD). Some of these symptoms, such as learning, memory, sensorial, and neurochemical changes, appear before the onset of motor deficits in both manganism and IPD. The aim of this study was to evaluate the possible neuroprotective effects of curcumin against behavioral deficits induced by Mn toxicity in young (2 months old) Swiss mice. We evaluated the effect of chronic inhalation of a Mn mixture [Mn(OAc)3 and MnCl2 (20:40 mM)], 1 h/session, three times a week, over a 14-week period on behavioral and neurochemical parameters. Curcumin was supplemented in the diet (500 or 1,500 ppm in food pellets). The Mn disrupted the motor performance evaluated in the single-pellet reach task, as well as the short- and long-term spatial memory evaluated in the step-down inhibitory avoidance task. Surprisingly, curcumin also produced similar deleterious effects in such behavioral tests. Moreover, the association of Mn plus curcumin significantly increased the levels of Mn and iron, and decreased the levels of dopamine and serotonin in the hippocampus. These alterations were not observed in the striatum. In conclusion, the current Mn treatment protocol resulted in mild deficits in motor and memory functions, resembling the early phases of IPD. Additionally, curcumin showed no beneficial effects against Mn-induced disruption of hippocampal metal and neurotransmitter homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rivera-Mancía S, Ríos C, Montes S (2011) Manganese accumulation in the CNS and associated pathologies. Biometals 24:811–825

    Article  PubMed  Google Scholar 

  2. Agency for Toxic Substances and Disease Registry (ATSDR) (2012) Toxicological profile for Manganese. U.S. Department of Health and Human Services, Public Health Service, Atlanta

    Google Scholar 

  3. Santamaria AB, Cushing CA, Antonini JM, Finley BL, Mowat FS (2007) State-of-the-science review: does manganese exposure during welding pose a neurological risk? J Toxicol Environ Health B Crit Rev 10:417–465

    Article  CAS  PubMed  Google Scholar 

  4. World Health Organization (WHO) (2000) Air quality guidelines for Europe. IOP Publishing PhysicsWeb. http://www.euro.who.int/en/health-topics/environment-and-health/air-quality/publications/pre2009/air-quality-guidelines-for-europe. Accessed 20 Jan 2014

  5. Aschner JL, Aschner M (2005) Nutritional aspects of manganese homeostasis. Mol Aspects Med 26:353–362

    Article  CAS  PubMed  Google Scholar 

  6. Keen CL, Ensunsa JL, Clegg MS (2000) Manganese metabolism in animals and humans including the toxicity of manganese. Met Ions Biol Syst 37:89–121

    CAS  PubMed  Google Scholar 

  7. Pace TG, Frank NH (1984) Procedures for estimating probability of nonattainment of a PM10 NAAQS using total suspended particulate or inhalable particulate data. U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Monitoring and Data Analysis Division, Washington, DC

    Google Scholar 

  8. Aschner M, Erikson KM, Dorman DC (2005) Manganese dosimetry: species differences and implications for neurotoxicity. Crit Rev Toxicol 35:1–32

    Article  CAS  PubMed  Google Scholar 

  9. Barbeau A (1984) Manganese and extrapyramidal disorders (a critical review and tribute to Dr. George C. Cotzias). Neurotoxicology 5:13–35

    CAS  PubMed  Google Scholar 

  10. Calne DB, Chu NS, Huang CC, Lu CS, Olanow W (1994) Manganism and idiopathic parkinsonism: similarities and differences. Neurology 44:1583–1586

    Article  CAS  PubMed  Google Scholar 

  11. Martin CJ (2006) Manganese neurotoxicity: connecting the dots along the continuum of dysfunction. Neurotoxicology 27:347–349

    Article  CAS  PubMed  Google Scholar 

  12. Normandin L, Ann Beaupré L, Salehi F, St -Pierre A, Kennedy G, Mergler D et al (2004) Manganese distribution in the brain and neurobehavioral changes following inhalation exposure of rats to three chemical forms of manganese. Neurotoxicology 25:433–441

    Article  CAS  PubMed  Google Scholar 

  13. Mergler D (1999) Neurotoxic effects of low level exposure to manganese in human populations. Environ Res 80:99–102

    Article  CAS  PubMed  Google Scholar 

  14. Rodier J (1955) Manganese poisoning in Moroccan miners. Br J Ind Med 12:21–35

    CAS  PubMed Central  PubMed  Google Scholar 

  15. HaMai D, Bondy SC (2004) Oxidative basis of manganese neurotoxicity. Ann N Y Acad Sci 1012:129–141

    Article  CAS  PubMed  Google Scholar 

  16. Mena I, Marin O, Fuenzalida S, Cotzias GC (1967) Chronic manganese poisoning. Clinical picture and manganese turnover. Neurology 17:128–136

    Article  CAS  PubMed  Google Scholar 

  17. Cersosimo MG, Koller WC (2006) The diagnosis of manganese-induced parkinsonism. Neurotoxicology 27:340–346

    Article  CAS  PubMed  Google Scholar 

  18. Bonilla E, Prasad AL (1984) Effects of chronic manganese intake on the levels of biogenic amines in rat brain regions. Neurobehav Toxicol Teratol 6:341–344

    CAS  PubMed  Google Scholar 

  19. Cordova FM, Aguiar AS Jr, Peres TV, Lopes MW, Gonçalves FM, Remor AP et al (2012) In vivo manganese exposure modulates Erk, Akt and Darpp-32 in the striatum of developing rats, and impairs their motor function. PLoS One 7:e33057

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Eriksson H, Mägiste K, Plantin LO, Fonnum F, Hedström KG, Theodorsson-Norheim E et al (1987) Effects of manganese oxide on monkeys as revealed by a combined neurochemical, histological and neurophysiological evaluation. Arch Toxicol 61:46–52

    Article  CAS  PubMed  Google Scholar 

  21. Komura J, Sakamoto M (1992) Effects of manganese forms on biogenic amines in the brain and behavioral alterations in the mouse: long-term oral administration of several manganese compounds. Environ Res 57:34–44

    Article  CAS  PubMed  Google Scholar 

  22. Betharia S, Maher TJ (2012) Neurobehavioral effects of lead and manganese individually and in combination in developmentally exposed rats. Neurotoxicology 33:1117–1127

    Article  CAS  PubMed  Google Scholar 

  23. Blecharz-Klin K, Piechal A, Joniec-Maciejak I, Pyrzanowska J, Widy-Tyszkiewicz E (2012) Effect of intranasal manganese administration on neurotransmission and spatial learning in rats. Toxicol Appl Pharmacol 265:1–9

    Article  CAS  PubMed  Google Scholar 

  24. Grünecker B, Kaltwasser SF, Zappe AC, Bedenk BT, Bicker Y, Spoormaker VI et al (2012) Regional specificity of manganese accumulation and clearance in the mouse brain: implications for manganese-enhanced MRI. NMR Biomed 26:242–256

    Google Scholar 

  25. Torres-Agustín R, Rodríguez-Agudelo Y, Schilmann A, Solís-Vivanco R, Montes S, Riojas-Rodríguez H et al (2012) Effect of environmental manganese exposure on verbal learning and memory in Mexican children. Environ Res 121:39–44

    Article  PubMed  Google Scholar 

  26. Archibald FS, Tyree C (1987) Manganese poisoning and the attack of trivalent manganese upon catecholamines. Arch Biochem Biophys 256:638–650

    Article  CAS  PubMed  Google Scholar 

  27. Ali SF, Duhart HM, Newport GD, Lipe GW, Slikker W Jr (1995) Manganese-induced reactive oxygen species: comparison between Mn+2 and Mn+3. Neurodegeneration 4:329–334

    Article  CAS  PubMed  Google Scholar 

  28. Chen JY, Tsao GC, Zhao Q, Zheng W (2001) Differential cytotoxicity of Mn(II) and Mn(III): special reference to mitochondrial [Fe-S] containing enzymes. Toxicol Appl Pharmacol 175:160–168

    Article  CAS  PubMed  Google Scholar 

  29. Perez-Vizcaino F, Duarte J, Santos-Buelga C (2012) The flavonoid paradox: conjugation and deconjugation as key steps for the biological activity of flavonoids. J Sci Food Agric 92(9):1822–1825

    Article  CAS  PubMed  Google Scholar 

  30. Cole GM, Teter B, Frautschy SA (2007) Neuroprotective effects of curcumin. Adv Exp Med Biol 595:197–212

    Article  PubMed Central  PubMed  Google Scholar 

  31. Hwang S-L, Shih P-H, Yen G-C (2012) Neuroprotective effects of citrus flavonoids. J Agric Food Chem 60:877–885

    Article  CAS  PubMed  Google Scholar 

  32. Park HY, Kim G-Y, Choi YH (2012) Naringenin attenuates the release of pro-inflammatory mediators from lipopolysaccharide-stimulated BV2 microglia by inactivating nuclear factor-κB and inhibiting mitogen-activated protein kinases. Int J Mol Med 30:204–210

    CAS  PubMed  Google Scholar 

  33. Menon LG, Kuttan R, Kuttan G (1999) Anti-metastatic activity of curcumin and catechin. Cancer Lett 141:159–165

    Article  CAS  PubMed  Google Scholar 

  34. Aggarwal BB, Kumar A, Bharti AC (2003) Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res 23:363–398

    CAS  PubMed  Google Scholar 

  35. Ruby AJ, Kuttan G, Babu KD, Rajasekharan KN, Kuttan R (1995) Anti-tumour and antioxidant activity of natural curcuminoids. Cancer Lett 94:79–83

    Article  CAS  PubMed  Google Scholar 

  36. Sugiyama Y, Kawakishi S, Osawa T (1996) Involvement of the beta-diketone moiety in the antioxidative mechanism of tetrahydrocurcumin. Biochem Pharmacol 52:519–525

    Article  CAS  PubMed  Google Scholar 

  37. Sharma OP (1976) Antioxidant activity of curcumin and related compounds. Biochem Pharmacol 25:1811–1812

    Article  CAS  PubMed  Google Scholar 

  38. Venkatesan N, Punithavathi D, Arumugam V (2000) Curcumin prevents adriamycin nephrotoxicity in rats. Br J Pharmacol 129:231–234

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Venkatesan N (1998) Curcumin attenuation of acute adriamycin myocardial toxicity in rats. Br J Pharmacol 124:425–427

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Reyes-Gordillo K, Segovia J, Shibayama M, Vergara P, Moreno MG, Muriel P (2007) Curcumin protects against acute liver damage in the rat by inhibiting NF-kappaB, proinflammatory cytokines production and oxidative stress. Biochim Biophys Acta 1770:989–996

    Article  CAS  PubMed  Google Scholar 

  41. Carmona-Ramírez I, Santamaría A, Tobón-Velasco JC, Orozco-Ibarra M, González-Herrera IG, Pedraza-Chaverrí J et al (2013) Curcumin restores Nrf2 levels and prevents quinolinic acid-induced neurotoxicity. J Nutr Biochem 24:14–24

    Article  PubMed  Google Scholar 

  42. Huang H-C, Xu K, Jiang Z-F (2012) Curcumin-mediated neuroprotection against amyloid-β-induced mitochondrial dysfunction involves the inhibition of GSK-3β. J Alzheimers Dis 32:981–996

    CAS  PubMed  Google Scholar 

  43. Mansouri Z, Sabetkasaei M, Moradi F, Masoudnia F, Ataie A (2012) Curcumin has neuroprotection effect on homocysteine rat model of Parkinson. J Mol Neurosci 47:234–242

    Article  CAS  PubMed  Google Scholar 

  44. Wu J, Li Q, Wang X, Yu S, Li L, Wu X et al (2013) Neuroprotection by curcumin in ischemic brain injury involves the Akt/Nrf2 pathway. PLoS One 8:e59843

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Tripanichkul W, Jaroensuppaperch E (2012) Curcumin protects nigrostriatal dopaminergic neurons and reduces glial activation in 6-hydroxydopamine hemiparkinsonian mice model. Int J Neurosci 122:263–270

    Article  CAS  PubMed  Google Scholar 

  46. Rajeswari A, Sabesan M (2008) Inhibition of monoamine oxidase-B by the polyphenolic compound, curcumin and its metabolite tetrahydrocurcumin, in a model of Parkinson’s disease induced by MPTP neurodegeneration in mice. Inflammopharmacology 16:96–99

    Article  CAS  PubMed  Google Scholar 

  47. Milatovic D, Zaja-Milatovic S, Gupta RC, Yu Y, Aschner M (2009) Oxidative damage and neurodegeneration in manganese-induced neurotoxicity. Toxicol Appl Pharmacol 240:219–225

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Perfeito R, Cunha-Oliveira T, Rego AC (2012) Revisiting oxidative stress and mitochondrial dysfunction in the pathogenesis of Parkinson disease—resemblance to the effect of amphetamine drugs of abuse. Free Radic Biol Med 53:1791–1806

    Article  CAS  PubMed  Google Scholar 

  49. Seet RCS, Lee C-YJ, Lim ECH, Tan JJH, Quek AML, Chong W-L et al (2010) Oxidative damage in Parkinson disease: measurement using accurate biomarkers. Free Radic Biol Med 48:560–566

    Article  CAS  PubMed  Google Scholar 

  50. Taylor MD, Erikson KM, Dobson AW, Fitsanakis VA, Dorman DC, Aschner M (2006) Effects of inhaled manganese on biomarkers of oxidative stress in the rat brain. Neurotoxicology 27:788–797

    Article  CAS  PubMed  Google Scholar 

  51. Balogun E, Hoque M, Gong P, Killeen E, Green CJ, Foresti R et al (2003) Curcumin activates the haem oxygenase-1 gene via regulation of Nrf2 and the antioxidant-responsive element. Biochem J 371:887–895

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Dairam A, Fogel R, Daya S, Limson JL (2008) Antioxidant and iron-binding properties of curcumin, capsaicin, and S-allylcysteine reduce oxidative stress in rat brain homogenate. J Agric Food Chem 56:3350–3356

    Article  CAS  PubMed  Google Scholar 

  53. Ordoñez-Librado JL, Gutierrez-Valdez AL, Colín-Barenque L, Anaya-Martínez V, Díaz-Bech P, Avila-Costa MR (2008) Inhalation of divalent and trivalent manganese mixture induces a Parkinson’s disease model: immunocytochemical and behavioral evidences. Neuroscience 155:7–16

    Article  PubMed  Google Scholar 

  54. Sanchez-Betancourt J, Anaya-Martínez V, Gutierrez-Valdez AL, Ordoñez-Librado JL, Montiel-Flores E, Espinosa-Villanueva J et al (2012) Manganese mixture inhalation is a reliable Parkinson disease model in rats. Neurotoxicology 33:1346–1355

    Article  CAS  PubMed  Google Scholar 

  55. Ordoñez-Librado JL, Anaya-Martínez V, Gutierrez-Valdez AL, Colín-Barenque L, Montiel-Flores E, Avila-Costa MR (2010) Manganese inhalation as a Parkinson disease model. Park Dis 2011:612989

    Google Scholar 

  56. Ordoñez-Librado JL, Anaya-Martinez V, Gutierrez-Valdez AL, Montiel-Flores E, Corona DR, Martinez-Fong D et al (2010) l-DOPA treatment reverses the motor alterations induced by manganese exposure as a Parkinson disease experimental model. Neurosci Lett 471:79–82

    Article  PubMed  Google Scholar 

  57. Frautschy SA, Hu W, Kim P, Miller SA, Chu T, Harris-White ME et al (2001) Phenolic anti-inflammatory antioxidant reversal of Abeta-induced cognitive deficits and neuropathology. Neurobiol Aging 22:993–1005

    Article  CAS  PubMed  Google Scholar 

  58. Jyoti A, Sethi P, Sharma D (2009) Curcumin protects against electrobehavioral progression of seizures in the iron-induced experimental model of epileptogenesis. Epilepsy Behav 14:300–308

    Article  PubMed  Google Scholar 

  59. Yang F, Lim GP, Begum AN, Ubeda OJ, Simmons MR, Ambegaokar SS et al (2005) Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem 280:5892–5901

    Article  CAS  PubMed  Google Scholar 

  60. Whishaw IQ (2000) Loss of the innate cortical engram for action patterns used in skilled reaching and the development of behavioral compensation following motor cortex lesions in the rat. Neuropharmacology 39:788–805

    Article  CAS  PubMed  Google Scholar 

  61. Rial D, Duarte FS, Xikota JC, Schmitz AE, Dafré AL, Figueiredo CP et al (2009) Cellular prion protein modulates age-related behavioral and neurochemical alterations in mice. Neuroscience 164:896–907

    Article  CAS  PubMed  Google Scholar 

  62. Almeida EA, Bainy ACD, Medeiros MHG, Di Mascio P (2003) Effects of trace metal and exposure to air on serotonin and dopamine levels in tissues of the mussel Perna perna. Mar Pollut Bull 46:1485–1490

    Article  CAS  PubMed  Google Scholar 

  63. Jackson GM, Jackson SR, Hindle JV (2000) The control of bimanual reach-to-grasp movements in hemiparkinsonian patients. Exp Brain Res 132:390–398

    Article  CAS  PubMed  Google Scholar 

  64. Santos D, Milatovic D, Andrade V, Batoreu MC, Aschner M, Marreilha dos Santos AP (2012) The inhibitory effect of manganese on acetylcholinesterase activity enhances oxidative stress and neuroinflammation in the rat brain. Toxicology 292:90–98

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Vezér T, Papp A, Hoyk Z, Varga C, Náray M, Nagymajtényi L (2005) Behavioral and neurotoxicological effects of subchronic manganese exposure in rats. Environ Toxicol Pharmacol 19:797–810

    Article  PubMed  Google Scholar 

  66. Adler CH (2011) Premotor symptoms and early diagnosis of Parkinson’s disease. Int J Neurosci 121(Suppl 2):3–8

    Article  PubMed  Google Scholar 

  67. Dubois B, Pillon B (1997) Cognitive deficits in Parkinson’s disease. J Neurol 244:2–8

    Article  CAS  PubMed  Google Scholar 

  68. Muslimovic D, Post B, Speelman JD, Schmand B (2005) Cognitive profile of patients with newly diagnosed Parkinson disease. Neurology 65:1239–1245

    Article  PubMed  Google Scholar 

  69. Erikson KM, John CE, Jones SR, Aschner M (2005) Manganese accumulation in striatum of mice exposed to toxic doses is dependent upon a functional dopamine transporter. Environ Toxicol Pharmacol 20:390–394

    Article  CAS  PubMed  Google Scholar 

  70. Stredrick DL, Stokes AH, Worst TJ, Freeman WM, Johnson EA, Lash LH et al (2004) Manganese-induced cytotoxicity in dopamine-producing cells. Neurotoxicology 25:543–553

    Article  CAS  PubMed  Google Scholar 

  71. Chang Y, Lee J-J, Seo J-H, Song H-J, Kim J-H, Bae S-J et al (2010) Altered working memory process in the manganese-exposed brain. NeuroImage 53:1279–1285

    Article  CAS  PubMed  Google Scholar 

  72. Schneider JS, Decamp E, Koser AJ, Fritz S, Gonczi H, Syversen T et al (2006) Effects of chronic manganese exposure on cognitive and motor functioning in non-human primates. Brain Res 1118:222–231

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Lesch KP, Bengel D, Heils A, Sabol SZ, Greenberg BD, Petri S et al (1996) Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 274:1527–1531

    Article  CAS  PubMed  Google Scholar 

  74. Dong S, Zeng Q, Mitchell ES, Xiu J, Duan Y, Li C et al (2012) Curcumin enhances neurogenesis and cognition in aged rats: implications for transcriptional interactions related to growth and synaptic plasticity. PLoS One 7:e31211

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Sethi P, Jyoti A, Hussain E, Sharma D (2009) Curcumin attenuates aluminium-induced functional neurotoxicity in rats. Pharmacol Biochem Behav 93:31–39

    Article  CAS  PubMed  Google Scholar 

  76. Khuwaja G, Khan MM, Ishrat T, Ahmad A, Raza SS, Ashafaq M et al (2011) Neuroprotective effects of curcumin on 6-hydroxydopamine-induced Parkinsonism in rats: behavioral, neurochemical and immunohistochemical studies. Brain Res 1368:254–263

    Article  CAS  PubMed  Google Scholar 

  77. Manto M, Bower JM, Conforto AB, Delgado-García JM, da Guarda SNF, Gerwig M et al (2012) Consensus Paper: roles of the cerebellum in motor control—the diversity of ideas on cerebellar involvement in movement. Cerebellum 11:457–487

    Article  PubMed  Google Scholar 

  78. Wolpaw JR, Chen XY (2006) The cerebellum in maintenance of a motor skill: a hierarchy of brain and spinal cord plasticity underlies H-reflex conditioning. Learn Mem 13:208–215

    Article  PubMed Central  PubMed  Google Scholar 

  79. Rüegg DG, Juvet P (1984) Contributions of the motor cortex and the cerebellum to a simple learned movement in the monkey. Neurosci Lett 46:235–239

    Article  PubMed  Google Scholar 

  80. Filip P, Lungu OV, Bareš M (2013) Dystonia and the cerebellum: a new field of interest in movement disorders? Clin Neurophysiol 124:1269–1276

    Article  PubMed  Google Scholar 

  81. Jaques JA dos S, Rezer JFP, Carvalho FB, da Rosa MM, Gutierres JM, Gonçalves JF, et al (2012) Curcumin protects against cigarette smoke-induced cognitive impairment and increased acetylcholinesterase activity in rats. Physiol Behav 106:664–669

  82. Jaques JADS, Doleski PH, Castilhos LG, da Rosa MM, Souza V do CG, Carvalho FB, et al (2013) Free and nanoencapsulated curcumin prevents cigarette smoke-induced cognitive impairment and redox imbalance. Neurobiol Learn Mem 100C:98–107

  83. Shohamy D, Adcock RA (2010) Dopamine and adaptive memory. Trends Cogn Sci (Regul Ed) 14:464–472

    Article  CAS  Google Scholar 

  84. Xu Y, Ku B-S, Yao H-Y, Lin Y-H, Ma X, Zhang Y-H et al (2005) Antidepressant effects of curcumin in the forced swim test and olfactory bulbectomy models of depression in rats. Pharmacol Biochem Behav 82:200–206

    Article  CAS  PubMed  Google Scholar 

  85. Kulkarni SK, Bhutani MK, Bishnoi M (2008) Antidepressant activity of curcumin: involvement of serotonin and dopamine system. Psychopharmacology (Berl) 201:435–442

    Article  CAS  Google Scholar 

  86. Du X-X, Xu H-M, Jiang H, Song N, Wang J, Xie J-X (2012) Curcumin protects nigral dopaminergic neurons by iron-chelation in the 6-hydroxydopamine rat model of Parkinson’s disease. Neurosci Bull 28:253–258

    Article  CAS  PubMed  Google Scholar 

  87. Heim KE, Tagliaferro AR, Bobilya DJ (2002) Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J Nutr Biochem 13:572–584

    Article  CAS  PubMed  Google Scholar 

  88. Tay WM, da Silva GFZ, Ming L-J (2013) Metal binding of flavonoids and their distinct inhibition mechanisms toward the oxidation activity of Cu(2+)-β-amyloid: not just serving as suicide antioxidants! Inorg Chem 52:679–690

    Article  CAS  PubMed  Google Scholar 

  89. Baum L, Ng A (2004) Curcumin interaction with copper and iron suggests one possible mechanism of action in Alzheimer’s disease animal models. J Alzheimers Dis 6:367–377

    CAS  PubMed  Google Scholar 

  90. Sumanont Y, Murakami Y, Tohda M, Vajragupta O, Watanabe H, Matsumoto K (2007) Effects of manganese complexes of curcumin and diacetylcurcumin on kainic acid-induced neurotoxic responses in the rat hippocampus. Biol Pharm Bull 30:1732–1739

    Article  CAS  PubMed  Google Scholar 

  91. Lambert JD, Sang S, Yang CS (2007) Possible controversy over dietary polyphenols: benefits vs risks. Chem Res Toxicol 20:583–585

    Article  CAS  PubMed  Google Scholar 

  92. Rietjens IMCM, Boersma MG, de Haan L, Spenkelink B, Awad HM, Cnubben NHP et al (2002) The pro-oxidant chemistry of the natural antioxidants vitamin C, vitamin E, carotenoids and flavonoids. Environ Toxicol Pharmacol 11:321–333

    Article  CAS  PubMed  Google Scholar 

  93. Sahu SC, Gray GC (1993) Interactions of flavonoids, trace metals, and oxygen: nuclear DNA damage and lipid peroxidation induced by myricetin. Cancer Lett 70:73–79

    Article  CAS  PubMed  Google Scholar 

  94. Sugihara N, Arakawa T, Ohnishi M, Furuno K (1999) Anti- and pro-oxidative effects of flavonoids on metal-induced lipid hydroperoxide-dependent lipid peroxidation in cultured hepatocytes loaded with alpha-linolenic acid. Free Radic Biol Med 27:1313–1323

    Article  CAS  PubMed  Google Scholar 

  95. Ahsan H, Parveen N, Khan NU, Hadi SM (1999) Pro-oxidant, anti-oxidant and cleavage activities on DNA of curcumin and its derivatives demethoxycurcumin and bisdemethoxycurcumin. Chem Biol Interact 121:161–175

    Article  CAS  PubMed  Google Scholar 

  96. Huang H-C, Lin C-J, Liu W-J, Jiang R-R, Jiang Z-F (2011) Dual effects of curcumin on neuronal oxidative stress in the presence of Cu(II). Food Chem Toxicol 49:1578–1583

    Article  CAS  PubMed  Google Scholar 

  97. Nair J, Strand S, Frank N, Knauft J, Wesch H, Galle PR et al (2005) Apoptosis and age-dependant induction of nuclear and mitochondrial etheno-DNA adducts in Long-Evans Cinnamon (LEC) rats: enhanced DNA damage by dietary curcumin upon copper accumulation. Carcinogenesis 26:1307–1315

    Article  CAS  PubMed  Google Scholar 

  98. Martins R de P, Braga H de C, da Silva AP, Dalmarco JB, de Bem AF, dos Santos ARS, et al (2009) Synergistic neurotoxicity induced by methylmercury and quercetin in mice. Food Chem Toxicol 47:645–649

  99. Li Y, He Y, Guan Q, Liu W, Han H, Nie Z (2012) Disrupted iron metabolism and ensuing oxidative stress may mediate cognitive dysfunction induced by chronic cerebral hypoperfusion. Biol Trace Elem Res 150:242–248

    Article  PubMed  Google Scholar 

  100. Umur EE, Oktenli C, Celik S, Tangi F, Sayan O, Sanisoglu YS et al (2011) Increased iron and oxidative stress are separately related to cognitive decline in elderly. Geriatr Gerontol Int 11:504–509

    Article  PubMed  Google Scholar 

  101. Napolitano A, Manini P, d’ Ischia M (2011) Oxidation chemistry of catecholamines and neuronal degeneration: an update. Curr Med Chem 18:1832–1845

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The scholarship to AES provided by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) is sincerely appreciated. ALD, MF, EAA, and RDSP are productivity research fellows of CNPq.

Ethics Committee Approval

All procedures in this study were performed in accordance with the NIH Guide for the Care and Use of Laboratory Animals and approved by the local university ethics committee, CEUA.

Conflict of Interest Statement

The authors declare that there are no conflicts of interests.

Funding Sources

This work was supported by CNPq (National Council for Research Development), FINEP Research Grant “Rede Instituto Brasileiro de Neurociência” (IBN-Net #01.06.0842-00), INCT-Excitotoxicity and Neuroprotection and FAPESC (Foundation for the Support of Scientific and Technological Research in the State of Santa Catarina).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alcir Luiz Dafre.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 93 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmitz, A.E., de Oliveira, P.A., de Souza, L.F. et al. Interaction of Curcumin with Manganese May Compromise Metal and Neurotransmitter Homeostasis in the Hippocampus of Young Mice. Biol Trace Elem Res 158, 399–409 (2014). https://doi.org/10.1007/s12011-014-9951-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-014-9951-5

Keywords

Navigation