Skip to main content
Log in

Manganese accumulation in the CNS and associated pathologies

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Manganese (Mn) is an essential metal for life. It is a key constituent of clue enzymes in the central nervous system, contributing to antioxidant defenses, energetic metabolism, ammonia detoxification, among other important functions. Until now, Mn transport mechanisms are partially understood; however, it is known that it shares some mechanisms of transport with iron. CNS is susceptible to Mn toxicity because it possesses mechanisms that allow Mn entry and favor its accumulation. Cases of occupational Mn exposure have been extensively reported in the literature; however, there are other ways of exposure, such as long-term parental nutrition and liver failure. Manganism and hepatic encephalopathy are the most common pathologies associated with the effects of Mn exposure. Both pathologies are associated with motor and psychiatric disturbances, related in turn to mechanisms of damage such as oxidative stress and neurotransmitters alterations, the dopaminergic system being one of the most affected. Although manganism and Parkinson’s disease share some characteristics, they differ in many aspects that are discussed here. The mechanisms for Mn transport and its participation in manganism and hepatic encephalopathy are also considered in this review. It is necessary to find an effective therapeutic strategy to decrease Mn levels in exposed individuals and to treat Mn long term effects. In the case of patients with chronic liver failure it would be worthwhile to test a low-Mn diet in order to ameliorate symptoms of hepatic encephalopathy possibly related to Mn accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Albin RL (2000) Basal ganglia neurotoxins. Neurol Clin 18:665–680

    PubMed  CAS  Google Scholar 

  • Anderson JG, Cooney PT, Erikson KM (2007) Inhibition of DAT function attenuates manganese accumulation in the globus pallidus. Environ Toxicol Pharmacol 23:179–184

    PubMed  CAS  Google Scholar 

  • Andrews NC (2000) Iron homeostasis: insights from genetics and animal models. Nat Rev Genet 1:208–217

    PubMed  CAS  Google Scholar 

  • Aoki I, Wu YJ, Silva AC, Lynch RM et al (2004) In vivo detection of neuroarchitecture in the rodent brain using manganese-enhanced MRI. Neuroimage 22:1046–1059

    PubMed  Google Scholar 

  • Archibald FS, Tyree C (1987) Manganese poisoning and the attack of trivalent manganese upon catecholamines. Arch Biochem Biophys 256:638–650

    PubMed  CAS  Google Scholar 

  • Aschner M, Aschner J (1991) Manganese neurotoxicity: cellular effects and blood–brain barrier transport. Neurosci Biobehav Rev 15:333–340

    PubMed  CAS  Google Scholar 

  • Aschner M, Gannon M (1994) Manganese (Mn) transport across the rat blood–brain barrier: saturable and transferrin-dependent transport mechanisms. Brain Res Bull 33:345–349

    PubMed  CAS  Google Scholar 

  • Aschner M, Gannon M, Kimelberg HK (1992) Manganese uptake and efflux in cultured rat astrocytes. J Neurochem 58:730–735

    PubMed  CAS  Google Scholar 

  • Aschner M, Vrana KE, Zheng W (1999) Manganese uptake and distribution in the central nervous system (CNS). Neurotoxicology 20:173–180

    PubMed  CAS  Google Scholar 

  • Aschner M, Mutkus L, Allen JW (2001) Aspartate and glutamate transport in acutely and chronically ethanol exposed neonatal rat primary astrocyte cultures. Neurotoxicology 22:601–605

    PubMed  CAS  Google Scholar 

  • Aschner M, Erikson KM, Dorman DC (2005) Manganese dosimetry: species differences and implications for neurotoxicity. Crit Rev Toxicol 35:1–32

    PubMed  CAS  Google Scholar 

  • Aschner M, Guilarte TR, Schneider JS, Zheng W (2007) Manganese: recent advances in understanding its transport and neurotoxicity. Toxicol Appl Pharmacol 221:131–147

    PubMed  CAS  Google Scholar 

  • Au C, Benedetto A, Aschner M (2008) Manganese transport in eukaryotes: the role of DMT1. Neurotoxicology 29:569–576

    PubMed  CAS  Google Scholar 

  • Autissier N, Rochette L, Dumas P, Beley A et al (1982) Dopamine and norepinephrine turnover in various regions of the rat brain after chronic manganese chloride administration. Toxicology 24:175–182

    PubMed  CAS  Google Scholar 

  • Avila DS, Colle D, Gubert P, Palma AS et al (2010) A possible neuroprotective action of a vinylic telluride against Mn-induced neurotoxicity. Toxicol Sci 115:194–201

    PubMed  CAS  Google Scholar 

  • Baek SY, Kim YH, Oh SO, Lee CR et al (2007) Manganese does not alter the severe neurotoxicity of MPTP. Hum Exp Toxicol 26:203–211

    PubMed  CAS  Google Scholar 

  • Bender AS, Norenberg MD (1996) Effects of ammonia on L-glutamate uptake in cultured astrocytes. Neurochem Res 21:567–573

    PubMed  CAS  Google Scholar 

  • Bock NA, Paiva FF, Nascimento GC, Newman JD et al (2008) Cerebrospinal fluid to brain transport of manganese in a non-human primate revealed by MRI. Brain Res 1198:160–170

    PubMed  CAS  Google Scholar 

  • Bonilla E (1980) l-tyrosine hydroxylase activity in the rat brain after chronic oral administration of manganese chloride. Neurobehav Toxicol 2:37–41

    PubMed  CAS  Google Scholar 

  • Borgohain R, Singh AK, Radhakrishna H, Rao VC et al (1995) Delayed onset generalised dystonia after cyanide poisoning. Clin Neurol Neurosurg 97:213–215

    PubMed  CAS  Google Scholar 

  • Bosetti C, Levi F, Lucchini F, Zatonski WA et al (2007) Worldwide mortality from cirrhosis: an update to 2002. J Hepatol 46:827–839

    PubMed  Google Scholar 

  • Bouchard M, Laforest F, Vandelac L, Bellinger D et al (2007) Hair manganese and hyperactive behaviors: pilot study of school-age children exposed through tap water. Environ Health Perspect 115:122–127

    PubMed  CAS  Google Scholar 

  • Brouillet EP, Shinobu L, McGarvey U, Hochberg F et al (1993) Manganese injection into the rat striatum produces excitotoxic lesions by impairing energy metabolism. Exp Neurol 120:89–94

    PubMed  CAS  Google Scholar 

  • Burdo JR, Martin J, Menzies SL, Dolan KG et al (1999) Cellular distribution of iron in the brain of the Belgrade rat. Neuroscience 93:1189–1196

    PubMed  CAS  Google Scholar 

  • Burdo JR, Menzies SL, Simpson IA, Garrick LM et al (2001) Distribution of divalent metal transporter 1 and metal transport protein 1 in the normal and Belgrade rat. J Neurosci Res 66:1198–1207

    PubMed  CAS  Google Scholar 

  • Burkhard PR, Delavelle J, Du PR, Spahr L (2003) Chronic Parkinsonism associated with cirrhosis: a distinct subset of acquired hepatocerebral degeneration. Arch Neurol 60:521–528

    PubMed  Google Scholar 

  • Burton NC, Schneider JS, Syversen T, Guilarte TR (2009) Effects of chronic manganese exposure on glutamatergic and GABAergic neurotransmitter markers in the nonhuman primate brain. Toxicol Sci 111:131–139

    PubMed  CAS  Google Scholar 

  • Butterworth RF (2000) Complications of cirrhosis III. Hepatic encephalopathy. J Hepatol 32(Suppl 1):171–180

    PubMed  CAS  Google Scholar 

  • Butterworth RF (2003) Hepatic encephalopathy. Alcohol Res Health 27:240–246

    PubMed  Google Scholar 

  • Butterworth RF (2008) Pathophysiology of hepatic encephalopathy: the concept of synergism. Hepatol Res 38(Suppl.1):S116–S121

    PubMed  CAS  Google Scholar 

  • Calne DB, Chu NS, Huang CC, Lu CS et al (1994) Manganism and idiopathic Parkinsonism: similarities and differences. Neurology 44:1583–1586

    PubMed  CAS  Google Scholar 

  • Carella F, Grassi MP, Savoiardo M, Contri P et al (1988) Dystonic-Parkinsonian syndrome after cyanide poisoning: clinical and MRI findings. J Neurol Neurosurg Psychiatry 51:1345–1348

    PubMed  CAS  Google Scholar 

  • Cauli O, Llansola M, Erceg S, Felipo V (2006) Hypolocomotion in rats with chronic liver failure is due to increased glutamate and activation of metabotropic glutamate receptors in substantia nigra. J Hepatol 45:654–661

    PubMed  CAS  Google Scholar 

  • Chandra SV, Shukla GS (1976) Role of iron deficiency in inducing susceptibility to manganese toxicity. Arch Toxicol 35:319–323

    PubMed  CAS  Google Scholar 

  • Choi IS (1983) Delayed neurologic sequelae in carbon monoxide intoxication. Arch Neurol 40:433–435

    PubMed  CAS  Google Scholar 

  • Desole MS, Esposito G, Migheli R, Fresu L et al (1995) Cellular defence mechanisms in the striatum of young and aged rats subchronically exposed to manganese. Neuropharmacology 34:289–295

    PubMed  CAS  Google Scholar 

  • Diaz-Veliz G, Mora S, Gomez P, Dossi MT et al (2004) Behavioral effects of manganese injected in the rat substantia nigra are potentiated by dicumarol, a DT-diaphorase inhibitor. Pharmacol Biochem Behav 77:245–251

    PubMed  CAS  Google Scholar 

  • Dietz MC, Ihrig A, Wrazidlo W, Bader M et al (2001) Results of magnetic resonance imaging in long-term manganese dioxide exposed workers. Environ Res 85:37–40

    PubMed  CAS  Google Scholar 

  • Donaldson J, McGregor D, LaBella F (1982) Manganese neurotoxicity: a model for free radical mediated neurodegeneration? Can J Physiol Pharmacol 60:1398–1405

    PubMed  CAS  Google Scholar 

  • Erikson KM, Aschner M (2006) Increased manganese uptake by primary astrocyte cultures with altered iron status is mediated primarily by divalent metal transporter. Neurotoxicology 27:125–130

    PubMed  CAS  Google Scholar 

  • Erikson KM, Syversen T, Steinnes E, Aschner M (2004) Globus pallidus: a target brain region for divalent metal accumulation associated with dietary iron deficiency. J Nutr Biochem 15:335–341

    PubMed  CAS  Google Scholar 

  • Erikson KM, Dorman DC, Lash LH, Aschner M (2008) Duration of airborne-manganese exposure in rhesus monkeys is associated with brain regional changes in biomarkers of neurotoxicity. Neurotoxicology 29:377–385

    PubMed  CAS  Google Scholar 

  • Fernandes A, de Oliveira EF, de Rezende IC, Ponzoni S (2010) Manganese neurotoxic time course is not influenced by l-deprenyl systemic treatment: influence of l-deprenyl in manganese neurotoxic time course. Brain Res 1317:277–285

    PubMed  CAS  Google Scholar 

  • Finkelstein Y, Zhang N, Fitsanakis VA, Avison MJ et al (2008) Differential deposition of manganese in the rat brain following subchronic exposure to manganese: a T1-weighted magnetic resonance imaging study. Isr Med Assoc J 10:793–798

    PubMed  Google Scholar 

  • Finley JW, Davis CD (1999) Manganese deficiency and toxicity: are high or low dietary amounts of manganese cause for concern? Biofactors 10:15–24

    PubMed  CAS  Google Scholar 

  • Fitsanakis VA, Piccola G, Aschner JL, Aschner M (2006) Characteristics of manganese (Mn) transport in rat brain endothelial (RBE4) cells, an in vitro model of the blood–brain barrier. Neurotoxicology 27:60–70

    PubMed  CAS  Google Scholar 

  • Fitsanakis VA, Piccola G, Marreilha dos Santos AP, Aschner JL et al (2007) Putative proteins involved in manganese transport across the blood brain barrier. Hum Exp Toxicol 26:295–302

    PubMed  CAS  Google Scholar 

  • Fitsanakis VA, Thompson KN, Deery SE, Milatovic D et al (2009) A chronic iron-deficient/high-manganese diet in rodents results in increased brain oxidative stress and behavioral deficits in the Morris water maze. Neurotox Res 15:167–178

    PubMed  CAS  Google Scholar 

  • Fitsanakis VA, Zhang N, Garcia S, Aschner M (2010) Manganese (Mn) and iron (Fe): interdependency of transport and regulation. Neurotox Res 18:124–131

    PubMed  Google Scholar 

  • Garcia SJ, Gellein K, Syversen T, Aschner M (2006) A manganese-enhanced diet alters brain metals and transporters in the developing rat. Toxicol Sci 92:516–525

    PubMed  CAS  Google Scholar 

  • Garrick MD (2011) Human iron transporters. Genes Nutr 6:45–54

    PubMed  CAS  Google Scholar 

  • Garrick MD, Singleton ST, Vargas F, Kuo HC et al (2006) DMT1: which metals does it transport? Biol Res 39:79–85

    PubMed  CAS  Google Scholar 

  • Gavin CE, Gunter KK, Gunter TE (1990) Manganese and calcium efflux kinetics in brain mitochondria. Relevance to manganese toxicity. Biochem J 266:329–334

    PubMed  CAS  Google Scholar 

  • Girijashanker K, He L, Soleimani M, Reed JM et al (2008) Slc39a14 gene encodes ZIP14, a metal/bicarbonate symporter: similarities to the ZIP8 transporter. Mol Pharmacol 73:1413–1423

    PubMed  CAS  Google Scholar 

  • Gonzalez-Zulueta M, Ensz LM, Mukhina G, Lebovitz RM et al (1998) Manganese superoxide dismutase protects nNOS neurons from NMDA and nitric oxide-mediated neurotoxicity. J Neurosci 18:2040–2055

    PubMed  CAS  Google Scholar 

  • Gorell JM, Johnson CC, Rybicki BA, Peterson EL et al (1999) Occupational exposure to manganese, copper, lead, iron, mercury and zinc and the risk of Parkinson’s disease. Neurotoxicology 20:239–247

    PubMed  CAS  Google Scholar 

  • Gruenheid S, Canonne-Hergaux F, Gauthier S, Hackam DJ et al (1999) The iron transport protein NRAMP2 is an integral membrane glycoprotein that colocalizes with transferrin in recycling endosomes. J Exp Med 189:831–841

    PubMed  CAS  Google Scholar 

  • Gunshin H, Mackenzie B, Berger UV, Gunshin Y et al (1997) Cloning and characterization of a mammalian protein-coupled metal-ion transporter. Nature 388:482–488

    PubMed  CAS  Google Scholar 

  • Gunter TE, Miller LM, Gavin CE, Eliseev R et al (2004) Determination of the oxidation states of manganese in brain, liver, and heart mitochondria. J Neurochem 88:266–280

    PubMed  CAS  Google Scholar 

  • Gunter KK, Aschner M, Miller LM, Eliseev R et al (2006) Determining the oxidation states of manganese in NT2 cells and cultured astrocytes. Neurobiol Aging 27:1816–1826

    PubMed  CAS  Google Scholar 

  • Gunter TE, Gerstner B, Lester T, Wojtovich AP et al (2010) An analysis of the effects of Mn2+ on oxidative phosphorylation in liver, brain, and heart mitochondria using state 3 oxidation rate assays. Toxicol Appl Pharmacol 249:65–75

    PubMed  CAS  Google Scholar 

  • Gwiazda R, Lucchini R, Smith D (2007) Adequacy and consistency of animal studies to evaluate the neurotoxicity of chronic low-level manganese exposure in humans. J Toxicol Environ Health A 70:594–605

    PubMed  CAS  Google Scholar 

  • HaMai D, Bondy SC (2004) Oxidative basis of manganese neurotoxicity. Ann N Y Acad Sci 1012:129–141

    PubMed  CAS  Google Scholar 

  • Hardy G (2009) Manganese in parenteral nutrition: who, when, and why should we supplement? Gastroenterology 137:S29–S35

    PubMed  CAS  Google Scholar 

  • Hazell AS, Butterworth RF (1999) Hepatic encephalopathy: an update of pathophysiologic mechanisms. Proc Soc Exp Biol Med 222:99–112

    PubMed  CAS  Google Scholar 

  • Hazell AS, Norenberg MD (1997) Manganese decreases glutamate uptake in cultured astrocytes. Neuchem Res 22:1443–1447

    CAS  Google Scholar 

  • Hazell AS, Normandin L, Norenberg MD, Kennedy G et al (2006) Alzheimer type II astrocytic changes following sub-acute exposure to manganese and its prevention by antioxidant treatment. Neurosci Lett 396:167–171

    PubMed  CAS  Google Scholar 

  • Hernández-Muñoz R, Díaz-Muñoz M, Suárez-Cuenca JE, Trejo-Solís C et al (2001) Adenosine reverses a prestablished CCl4-induced micronodular cirrhosis through enhancing collagenolytic activity and stimulating hepatocyte cell proliferation in rats. Hepatology 34:677–687

    PubMed  Google Scholar 

  • Higashi Y, Asanuma M, Miyazaki I, Hattori N et al (2004) Parkin attenuates manganese-induced dopaminergic cell death. J Neurochem 89:1490–1497

    PubMed  CAS  Google Scholar 

  • Hill JM, Ruff MR, Weber RJ, Pert CB (1985) Transferrin receptors in rat brain: neuropeptide-like pattern and relationship to iron distribution. Proc Natl Acad Sci U S A 82:4553–4557

    Google Scholar 

  • Iheagwara KN, Thom SR, Deutschman CS, Levy RJ (2007) Myocardial cytochrome oxidase activity is decreased following carbon monoxide exposure. Biochim Biophys Acta 1772:1112–1116

    PubMed  CAS  Google Scholar 

  • Iregren A (1999) Manganese neurotoxicity in industrial exposures: proof of effects, critical exposure level, and sensitive tests. Neurotoxicology 20:315–323

    PubMed  CAS  Google Scholar 

  • Jalan R, Shawcross D, Davies N (2003) The molecular pathogenesis of hepatic encephalopathy. Int J Biochem Cell Biol 35:1175–1181

    PubMed  CAS  Google Scholar 

  • Jiang YM, Mo XA, Du FQ, Fu X et al (2006) Effective treatment of manganese-induced occupational Parkinsonism with p-aminosalicylic acid: a case of 17-year follow-up study. J Occup Environ Med 48:644–649

    PubMed  Google Scholar 

  • Joebges EM, Heidemann M, Schimke N, Hecker H et al (2003) Bradykinesia in minimal hepatic encephalopathy is due to disturbances in movement initiation. J Hepatol 38:273–280

    PubMed  Google Scholar 

  • Jursa T, Smith DR (2009) Ceruloplasmin alters the tissue disposition and neurotoxicity of manganese, but not its loading onto transferrin. Toxicol Sci 107:182–193

    PubMed  CAS  Google Scholar 

  • Katsoyiannis IA, Katsoyiannis AA (2006) Arsenic and other metal contamination of groundwaters in the industrial area of Thessaloniki, Northern Greece. Environ Monit Assess 123:393–406

    PubMed  CAS  Google Scholar 

  • Keen CL, Ensunsa JL, Clegg MS (2000) Manganese metabolism in animals and humans including the toxicity of manganese. Met Ions Biol Syst 37:89–121

    PubMed  CAS  Google Scholar 

  • Kim Y, Kim KS, Yang JS, Park IJ et al (1999) Increase in signal intensities on T1-weighted magnetic resonance images in asymptomatic manganese exposed workers. Neurotoxicology 20:901–908

    PubMed  CAS  Google Scholar 

  • Klos KJ, Ahlskog JE, Kumar N, Cambern S et al (2006) Brain metal concentrations in chronic liver failure patients with pallidal T1 MRI hyperintensity. Neurology 67:1984–1989

    PubMed  CAS  Google Scholar 

  • Krieger D, Krieger S, Jansen O, Gass P et al (1995) Manganese and chronic hepatic encephalopathy. Lancet 346:270–274

    PubMed  CAS  Google Scholar 

  • Kulisevsky J, Pujol J, Junque C, Deus J et al (1993) MRI pallidal hyperintensity and brain atrophy in cirrhotic patients: two different MRI patterns of clinical deterioration? Neurology 43:2570–2573

    PubMed  CAS  Google Scholar 

  • Kwik-Uribe C, Smith DR (2006) Temporal responses in the disruption of iron regulation by manganese. J Neurosci Res 83:1601–1610

    PubMed  CAS  Google Scholar 

  • Laterra J, Keep R, Betz LA, Goldstein GW (1999) Blood–brain-cerebrospinal fluid barriers. In: Siegel GJ, Agranoff BW, Albers RW, Fisher SK, Uhler MD (eds) Basic neurochemistry: molecular, cellular and medical aspects, 6th edn. Lippincott Williams & Wilkins, New York, pp 671–689

    Google Scholar 

  • Leavesley HB, Li L, Mukhopadhyay S, Borowitz JL et al (2010) Nitrite-mediated antagonism of cyanide inhibition of cytochrome c oxidase in dopamine neurons. Toxicol Sci 115:569–576

    PubMed  CAS  Google Scholar 

  • Lee MS, Marsden CD (1994) Neurological sequelae following carbon monoxide poisoning clinical course and outcome according to the clinical types and brain computed tomography scan findings. Mov Disord 9:550–558

    PubMed  CAS  Google Scholar 

  • Lee ES, Sidoryk M, Jiang H, Yin Z et al (2009) Estrogen and tamoxifen reverse manganese-induced glutamate transporter impairment in astrocytes. J Neurochem 110:530–544

    PubMed  CAS  Google Scholar 

  • Levy B, Nassetta WJ (2003) Neurologic effects of manganese in humans: a review. Int J Occup Environ Health 9:153–163

    PubMed  CAS  Google Scholar 

  • Liu X, Sullivan KA, Madl JE, Legare M et al (2006) Manganese-induced neurotoxicity: the role of astroglial-derived nitric oxide in striatal interneuron degeneration. Toxicol Sci 91:521–531

    PubMed  CAS  Google Scholar 

  • Lockman P, Roder K, Allen D (2001) Inhibition of the rat blood–brain barrier choline transporter by manganese chloride. J Neurochem 79:588–594

    PubMed  CAS  Google Scholar 

  • Lu CS, Huang CC, Chu NS, Calne DB (1994) Levodopa failure in chronic manganism. Neurology 44:1600–1602

    PubMed  CAS  Google Scholar 

  • Malecki EA (2001) Manganese toxicity is associated with mitochondrial dysfunction and DNA fragmentation in rat primary striatal neurons. Brain Res Bull 55:225–228

    PubMed  CAS  Google Scholar 

  • Malecki EA, Devenyi AG, Beard JL, Connor JR (1999) Existing and emerging mechanisms for transport of iron and manganese to the brain. J Neurosci Res 56:113–122

    PubMed  CAS  Google Scholar 

  • McCord JM (1976) Iron- and manganese-containing superoxide dismutases: structure, distribution, and evolutionary relationships. Adv Exp Med Biol 74:540–550

    PubMed  CAS  Google Scholar 

  • McDougall SA, Reichel CM, Farley CM, Flesher MM et al (2008) Postnatal manganese exposure alters dopamine transporter function in adult rats: potential impact on nonassociative and associative processes. Neuroscience 154:848–860

    PubMed  CAS  Google Scholar 

  • Mechtcheriakov S, Graziadei IW, Kugener A, Schuster I et al (2006) Motor dysfunction in patients with liver cirrhosis: impairment of handwriting. J Neurol 253:349–356

    PubMed  Google Scholar 

  • Milatovic D, Yin Z, Gupta RC, Sidoryk M et al (2007) Manganese induces oxidative impairment in cultured rat astrocytes. Toxicol Sci 98:198–205

    PubMed  CAS  Google Scholar 

  • Milatovic D, Zaja-Milatovic S, Gupta RC, Yu Y et al (2009) Oxidative damage and neurodegeneration in manganese-induced neurotoxicity. Toxicol Appl Pharmacol 240:219–225

    PubMed  CAS  Google Scholar 

  • Montes S, Alcaraz-Zubeldia M, Muriel P, Ríos C (2001) Striatal manganese accumulation induces changes in dopamine metaboism in the cirrhotic rat. Brain Res 891:123–129

    PubMed  CAS  Google Scholar 

  • Montes S, Alcaraz-Zubeldia M, Muriel P, Ríos C (2003) Role of manganese accumulation in increased brain glutamine of the cirrhotic rat. Neurochem Res 28:911–917

    PubMed  CAS  Google Scholar 

  • Murayama Y, Weber B, Saleem KS, Augath M et al (2006) Tracing neural circuits in vivo with Mn-enhanced MRI. Magn Reson Imaging 24:349–358

    PubMed  CAS  Google Scholar 

  • Murphy VA, Wadhwani KC, Smith QR, Rapoport SI (1991) Saturable transport of manganese(II) across the rat blood–brain barrier. J Neurochem 57:948–954

    PubMed  CAS  Google Scholar 

  • Myers JE, teWaterNaude J, Fourie M, Zogoeh B et al (2003) Nervous system effects of occupational manganese exposure on South African manganese mineworkers. Neurotoxicology 24:649–656

    PubMed  CAS  Google Scholar 

  • Myers JE, Fine J, Ormond-Brown D, Fry J et al (2009) Estimating the prevalence of clinical manganism using a cascaded screening process in a South African manganese smelter. Neurotoxicology 30:934–940

    PubMed  CAS  Google Scholar 

  • Nagatomo S, Umehara F, Hanada K, Nobuhara Y et al (1999) Manganese intoxication during total parenteral nutrition: report of two cases and review of the literature. J Neurol Sci 162:102–105

    PubMed  CAS  Google Scholar 

  • Nagy JI, Carter DA, Lehmann J, Fibiger HC (1978) Evidence for a GABA-containing projection from the entopeduncular nucleus to the lateral habenula in the rat. Brain Res 145:360–364

    Google Scholar 

  • Nelson M, Huggins T, Licorish R, Carroll MA et al (2010) Effects of p-Aminosalicylic acid on the neurotoxicity of manganese on the dopaminergic innervation of the cilia of the lateral cells of the gill of the bivalve mollusc, Crassostrea virginica. Comp Biochem Physiol C Toxicol Pharmacol 151:264–270

    PubMed  Google Scholar 

  • Norenberg MD (1981) Astrocytes in liver disease. In: Fedoroff F, Hertz L (eds) Advances in cellular neurobiology. Academic Press, New York, pp 303–352

    Google Scholar 

  • Norenberg M (2001) Astrocytes and ammonia in hepatic encephalopathy. In: de Vellis J (ed) Astrocytes in the aging brain. Humana Press, New Jersey, pp 477–496

    Google Scholar 

  • Norenberg M, Rama Rao KV, Jayakumar AR (2004) Ammonia neurotoxicity and the mitochondrial permeability transition. J Bioenerg Biomembr 36:303–307

    PubMed  CAS  Google Scholar 

  • Normandin L, Hazell AS (2002) Manganese neurotoxicity: an update of pathophysiologic mechanisms. Metab Brain Dis 17:375–387

    PubMed  CAS  Google Scholar 

  • Oikawa S, Hirosawa I, Tada-Oikawa S, Furukawa A et al (2006) Mechanism for manganese enhancement of dopamine-induced oxidative DNA damage and neuronal cell death. Free Radic Biol Med 41:456–748

    Google Scholar 

  • Olanow CW (2004) Manganese-induced Parkinsonism and Parkinson’s disease. Ann N Y Acad Sci 1012:209–223

    PubMed  CAS  Google Scholar 

  • Olanow CW, Good PF, Shinotoh H, Hewitt KA et al (1996) Manganese intoxication in the rhesus monkey: a clinical, imaging, pathologic, and biochemical study. Neurology 46:492–498

    PubMed  CAS  Google Scholar 

  • Pal PK, Samii A, Calne DB (1999) Manganese neurotoxicity: a review of clinical features, imaging and pathology. Neurotoxicology 20:227–238

    PubMed  CAS  Google Scholar 

  • Panickar KS, Jayakumar AR, Rama Rao KV, Norenberg MD (2007) Downregulation of the 18-kDa translocator protein: effects on the ammonia-induced mitochondrial permeability transition and cell swelling in cultured astrocytes. Glia 55:1720–1727

    PubMed  CAS  Google Scholar 

  • Papavasiliou PS, Miller ST, Cotzias GC (1966) Role of liver in regulating distribution and excretion of manganese. Am J Physiol 211:211–216

    PubMed  CAS  Google Scholar 

  • Pappas BA, Zhang D, Davidson CM, Crowder T et al (1997) Perinatal manganese exposure: behavioral, neurochemical, and histopathological effects in the rat. Neurotoxicol Teratol 19:17–25

    PubMed  CAS  Google Scholar 

  • Park RM, Bowler RM, Roels HA (2009) Exposure-response relationship and risk assessment for cognitive deficits in early welding-induced manganism. J Occup Environ Med 51:1125–1136

    PubMed  CAS  Google Scholar 

  • Pentschew A, Ebner FF, Kovatch RM (1963) Experimental manganese encephalopathy in monkeys. J Neuropathol Exp Neurol 22:488–499

    PubMed  CAS  Google Scholar 

  • Perl DP, Olanow CW (2007) The neuropathology of manganese-induced Parkinsonism. J Neuropathol Exp Neurol 66:675–682

    PubMed  CAS  Google Scholar 

  • Piantadosi CA, Carraway MS, Suliman HB (2006) Carbon monoxide, oxidative stress, and mitochondrial permeability pore transition. Free Radic Biol Med 40:1332–1339

    PubMed  CAS  Google Scholar 

  • Pomier-Layrargues G (2001) Movement dysfunction and hepatic encephalopathy. Metab Brain Dis 16:27–35

    Google Scholar 

  • Pomier-Layrargues G, Spahr L, Butterworth RF (1995) Increased manganese concentrations in pallidum of cirrhotic patients. Lancet 345:375

    Google Scholar 

  • Prabhakarana K, Ghosh D, Chapman GD, Gunasekar PG (2008) Molecular mechanism of manganese exposure-induced dopaminergic toxicity. Brain Res Bull 76:361–367

    Google Scholar 

  • Prozialeck WC, Edwards JR, Nebert DW, Woods JM et al (2008) The vascular system as a target of metal toxicity. Toxicol Sci 102:207–218

    PubMed  CAS  Google Scholar 

  • Pujol A, Pujol J, Graus F, Rimola A et al (1993) Hyperintense globus pallidus on T1-weighted MRI in cirrhotic patients is associated with severity of liver failure. Neurology 43:65–69

    PubMed  CAS  Google Scholar 

  • Quero JC, Schalm SW (1996) Subclinical hepatic encephalopathy. Semin Liver Dis 16:241–248

    Google Scholar 

  • Quero Guillén JC, Herrerías-Gutiérrez JM (2006) Diagnostic methods in hepatic encephalopathy. Clin Chim Acta 365:1–8

    PubMed  Google Scholar 

  • Rama Rao KVR, Reddy PVB, Hazell AS, Norenberg MD (2007) Manganese induces cell swelling in cultured astrocytes. Neurotoxicology 28:807–812

    PubMed  CAS  Google Scholar 

  • Rao KV, Norenberg MD (2004) Manganese induces the mitochondrial permeability transition in cultured astrocytes. J Biol Chem 279:32333–32338

    PubMed  CAS  Google Scholar 

  • Reaney SH, Kwik-Uribe CL, Smith DR (2002) Manganese oxidation state and its implications for toxicity. Chem Res Toxicol 15:1119–1126

    PubMed  CAS  Google Scholar 

  • Rose C, Butterworth RF, Zayed J, Normandin L et al (1999) Manganese deposition in basal ganglia structures results from both portal-systemic shunting and liver disfunctyon. Gastroenterology 117:640–644

    PubMed  CAS  Google Scholar 

  • Roth JA, Garrick MD (2003) Iron interactions and other biological reactions mediating the physiological and toxic actions of manganese. Biochem Pharmacol 66:1–13

    PubMed  CAS  Google Scholar 

  • Roth JA, Singleton S, Feng J, Garrick M et al (2010) Parkin regulates metal transport via proteasomal degradation of the 1B isoforms of divalent metal transporter 1. J Neurochem 113:454–464

    PubMed  CAS  Google Scholar 

  • Rouault TA, Zhang DL, Jeong SY (2009) Brain iron homeostasis, the choroid plexus, and localization of iron transport proteins. Metab Brain Dis 24:673–684

    PubMed  CAS  Google Scholar 

  • Salazar J, Mena N, Hunot S, Prigent A et al (2008) Divalent metal transporter 1 (DMT1) contributes to neurodegeneration in animal models of Parkinson’s disease. Proc Natl Acad Sci U S A 105:18578–18583

    PubMed  CAS  Google Scholar 

  • Saleem KS, Pauls JM, Augath M, Trinath T et al (2002) Magnetic resonance imaging of neuronal connections in the macaque monkey. Neuron 34:685–700

    PubMed  CAS  Google Scholar 

  • Santamaria AB, Cushing CA, Antonini JM, Finley BL et al (2007) State-of-the-science review: does manganese exposure during welding pose a neurological risk? J Toxicol Environ Health B Crit Rev 10:417–465

    PubMed  CAS  Google Scholar 

  • Schaumburg HH, Herskovitz S, Cassano VA (2006) Occupational manganese neurotoxicity provoked by hepatitis C. Neurology 67:322–323

    PubMed  Google Scholar 

  • Settivari R, Levora J, Nass R (2009) The divalent metal transporter homologues SMF-1/2 mediate dopamine neuron sensitivity in caenorhabditis elegans models of manganism and Parkinson disease. J Biol Chem 284:35758–35768

    PubMed  CAS  Google Scholar 

  • Siddappa AJ, Rao RB, Wobken JD, Leibold EA et al (2002) Developmental changes in the expression of iron regulatory proteins and iron transport proteins in the perinatal rat brain. J Neurosci Res 68:761–775

    PubMed  CAS  Google Scholar 

  • Sidoryk-Wegrzynowicz M, Lee E, Albrecht J, Aschner M (2009) Manganese disrupts astrocyte glutamine transporter expression and function. J Neurochem 110:822–830

    PubMed  CAS  Google Scholar 

  • Sistrunk SC, Ross MK, Filipov NM (2007) Direct effects of manganese compounds on dopamine and its metabolite Dopac: An in vitro study. Environ Toxicol Pharmacol 23:286–296

    PubMed  CAS  Google Scholar 

  • Sloot WN, Gramsbergen JBP (1994) Axonal transport of manganese and its relevance to selective neurotoxicity in the rat basal ganglia. Brain Res 657:124–132

    PubMed  CAS  Google Scholar 

  • Sloot WN, van der Sluijs-Gelling AJ, Gramsbergen JB (1994) Selective lesions by manganese and extensive damage by iron after injection into rat striatum or hippocampus. J Neurochem 62:205–216

    PubMed  CAS  Google Scholar 

  • Spahr L, Vingerhoets F, Lazeyras F et al (2000) Magnetic resonance imaging and proton spectroscopic alterations correlate with Parkinsonian signs in patients with cirrhosis. Gastroenterology 119:774–781

    PubMed  CAS  Google Scholar 

  • Sriram K, Lin GX, Jefferson AM, Roberts JR et al (2010) Mitochondrial dysfunction and loss of Parkinson’s disease-linked proteins contribute to neurotoxicity of manganese-containing welding fumes. FASEB J 24:4989–5002

    PubMed  CAS  Google Scholar 

  • Stanwood GD, Leitch DB, Savchenko V, Wu J et al (2009) Manganese exposure is cytotoxic and alters dopaminergic and GABAergic neurons within the basal ganglia. J Neurochem 110:378–389

    PubMed  CAS  Google Scholar 

  • Takeda A (2003) Manganese action in brain function. Brain Res Rev 41:79–87

    PubMed  CAS  Google Scholar 

  • Takeda A, Ishiwatari S, Okada S (2000) Influence of transferrin on manganese uptake in rat brain. J Neurosci Res 59:542–552

    PubMed  CAS  Google Scholar 

  • Tomás-Camardiel M, Herrera AJ, Venero JL, Sánchez-Hidalgo MC et al (2002) Differential regulation of glutamic acid decarboxylase mRNA and tyrosine hydroxylase mRNA expression in the aged manganese-treated rats. Brain Res Mol Brain Res 103:116–129

    PubMed  Google Scholar 

  • Tran TT, Chowanadisai W, Crinella FM, Chicz-DeMet A et al (2002) Effect of high dietary manganese intake of neonatal rats on tissue mineral accumulation, striatal dopamine levels, and neurodevelopmental status. Neurotoxicology 23:635–643

    PubMed  CAS  Google Scholar 

  • Verity MA (1999) Manganese neurotoxicity: a mechanistic hypothesis. Neurotoxicology 20:489–497

    PubMed  CAS  Google Scholar 

  • vom Dahl S, Kircheis G, Häussinger D (2001) Hepatic encephalopathy as a complication of liver disease. World J Gastroenterol 7:152–156

    PubMed  CAS  Google Scholar 

  • Walaas I, Fonnum F (1979) The distribution and origin of glutamate decarboxylase and choline acetyltransferase in ventral pallidum and other basal forebrain regions. Brain Res 177:325–336

    Google Scholar 

  • Wang X, Miller DS, Zheng W (2008) Intracellular localization and subsequent redistribution of metal transporters in a rat choroid plexus model following exposure to manganese or iron. Toxicol Appl Pharmacol 230:167–174

    PubMed  CAS  Google Scholar 

  • Wedler FC, Denman RB (1984) Glutamine synthetase: the major Mn(II) enzyme in mammalian brain. Curr Top Cell Regul 24:153–169

    PubMed  CAS  Google Scholar 

  • Wolburg H, Paulus W (2010) Choroid plexus: biology and pathology. Acta Neuropathol 119:75–88

    PubMed  Google Scholar 

  • Wolters EC, Huang CC, Clark C, Peppard RF et al (1989) Positron emission tomography in manganese intoxication. Ann Neurol 26:647–651

    PubMed  CAS  Google Scholar 

  • Wu LJ, Leenders AG, Cooperman S, Meyron-Holtz E et al (2004) Expression of the iron transporter ferroportin in synaptic vesicles and the blood–brain barrier. Brain Res 1001:108–117

    PubMed  CAS  Google Scholar 

  • Yamada M, Ohno S, Okayasu I, Okeda R et al (1986) Chronic manganese poisoning: a neuropatghological study with determination of manganese distribution in the brain. Acta Neuropathol 70:273–278

    PubMed  CAS  Google Scholar 

  • Yin Z, Aschner JL, dos Santos AP, Aschner M (2008) Mitochondrial-dependent manganese neurotoxicity in rat primary astrocyte cultures. Brain Res 1203:1–11

    PubMed  CAS  Google Scholar 

  • Yin Z, Jiang H, Lee ES, Ni M et al (2010) Ferroportin is a manganese-responsive protein that decreases manganese cytotoxicity and accumulation. J Neurochem 112:1190–1198

    PubMed  CAS  Google Scholar 

  • Yokel RA, Crossgrove JS (2004) Manganese toxicokinetics at the blood–brain barrier. Res Rep Health Eff Inst 119:7–58

    PubMed  CAS  Google Scholar 

  • Zhang J, Fitsanakis VA, Gu G, Jing D et al (2003a) Manganese ethylene-bis-dithiocarbamate and selective dopaminergic neurodegeneration in rat: a link through mitochondrial dysfunction. J Neurochem 84:336–346

    PubMed  CAS  Google Scholar 

  • Zhang S, Zhou Z, Fu J (2003b) Effect of manganese chloride exposure on liver and brain mitochondria function in rats. Environ Res 93:149–157

    PubMed  CAS  Google Scholar 

  • Zhang S, Fu J, Zhou Z (2004) In vitro effect of manganese chloride exposure on reactive oxygen species generation and respiratory chain complexes activities of mitochondria isolated from rat brain. Toxicol In Vitro 18:71–77

    PubMed  Google Scholar 

  • Zhang F, Xu Z, Gao J, Xu B et al (2008) In vitro effect of manganese chloride exposure on energy metabolism and oxidative damage of mitochondria isolated from rat brain. Environ Toxicol Pharmacol 26:232–236

    PubMed  CAS  Google Scholar 

  • Zhao F, Cai T, Liu M, Zheng G et al (2009) Manganese induces dopaminergic neurodegeneration via microglial activation in a rat model of manganism. Toxicol Sci 107:156–164

    PubMed  CAS  Google Scholar 

  • Zheng W, Ren S, Graziano JH (1998) Manganese inhibits mitochondrial aconitase: a mechanism of manganese neurotoxicity. Brain Res 799:334–342

    PubMed  CAS  Google Scholar 

  • Zwingmann C, Leibfritz D, Hazell AS (2004) Brain energy metabolism in a sub-acute rat model of manganese neurotoxicity: an ex vivo nuclear magnetic resonance study using [1–13C]glucose. Neurotoxicology 25:573–587

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

S. Rivera-Mancía wants to thank the Biomedical Research Graduate Program, the Biomedical Research Institute and the National Autonomous University of Mexico for their support to carry out this work. S Rivera-Mancía receives a fellowship from Consejo Nacional de Ciencia y Tecnología (CONACYT) (203330). S Montes receives a grant from CONACYT (51541).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Montes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rivera-Mancía, S., Ríos, C. & Montes, S. Manganese accumulation in the CNS and associated pathologies. Biometals 24, 811–825 (2011). https://doi.org/10.1007/s10534-011-9454-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-011-9454-1

Keywords

Navigation