Skip to main content
Log in

Combined Effects of Muscular Dystrophy, Ecological Stress, and Selenium on Blood Antioxidant Status in Broiler Chickens

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The results obtained in this study demonstrated that experimentally induced alimentary muscular dystrophy (MD) in Cobb 500 broiler chickens resulted in increased plasma concentrations of malondialdehyde (MDA), deviations in activities of erythrocyte antioxidant enzymes Cu,Zn-SOD (decrease), and CAT (increase) as well as reduction in plasma concentrations of trace elements Cu, Zn, and Se in affected birds. These data evidenced the presence of oxidative stress in birds with MD, reared both under conditions of ecological comfort and ecological stress. The increased MDA and САТ levels and the reduced Cu,Zn-SOD, Cu, Zn, and Se concentrations in healthy chickens reared under unfavorable microclimatic conditions such as higher air temperature and humidity, higher ammonia concentrations, and lower light intensity were indicative about an induced ecological stress. After the 10-day oral treatment with a selenium-containing preparation, the levels of MDA, Cu,Zn-SOD, CAT, Cu, Zn, and Se attained their normal values in chickens with MD, reared under ecologically comfortable conditions. According to our results, ecological stress was shown to exert independently a significant adverse effect upon the levels of the studied parameters and possibly to be a cause for their slower and not complete normalization despite the selenium therapy in experimental broiler chickens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tappel A, Tappel A (2004) Oxidant free radical initiated chain polymerization of protein and other biomolecules and its relationship to diseases. Med Hypotheses 63:98–99

    Article  PubMed  CAS  Google Scholar 

  2. Fridivich I (1978) The biology of oxygen radicals. Science 20:87

    Google Scholar 

  3. Wiseman H, Halliwell B (1996) Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem J 313:17–29

    PubMed  CAS  Google Scholar 

  4. Hirotomo K, Horie T, Ishikawa S, Tsuda C, Kawakami S et al (2010) Oxidative stress in skeletal muscle causes severe disturbance of exercise activity without muscle atrophy. Free Radical Biol Med 48:1252–1262

    Article  Google Scholar 

  5. Murphy ME, Kehrer JP (1986) Oxidative stress and muscular dystrophy. Biochem Bioph Res Co 134(2):550–556

    Article  CAS  Google Scholar 

  6. Surai PF (2002a) Selenium in pou1try nutrition 1. Antioxidant properties, deficiency and toxicity. World Poultry Sci J 58:333–346

    Article  Google Scholar 

  7. Xiong S, Markesbery WR, Shao C, Lovell MA (2007) Seleno-l-methionine protects against β-amyloid and iron/hydrogene peroxide-mediated neuron death. Antiox Redox Sign 9(4):457–467

    Article  CAS  Google Scholar 

  8. Evans P, Halliwet B (2001) Micronutrients: oxidant/antioxidant status. J Nutr 121:324–338

    Google Scholar 

  9. Debsky B, Krynski A, Skrzymowska K (2005) Selenium concentration in musk rat, hare, cow tissues and in cow’s milk, as an indicator of its status in local ecosystem. Int Soc Animal Hygiene 2:442–445

    Google Scholar 

  10. Kumar MS, Selvam R (2003) Supplementation of vitamin E and selenium prevents hyperoxaluria in experimental rats. J Nutr Biochem 14(6):306–313

    Article  Google Scholar 

  11. Nunes AV, Gozzo AJ, Crus-Silva I, Juliano MA, Viel TA et al (2005) Vitamin E prevents cell death induced by mild oxidative stress in chicken skeletal muscle cells. Com Biochem Phys C 141(3):225–240

    Article  Google Scholar 

  12. Koski KG, Marilyn E (2003) Gastrointestinal nematodes, trace elements, and immunity. J Trace Elem Exp Med 16(4):237–251

    Article  CAS  Google Scholar 

  13. Foster LH, Sumar S (1997) Selenium in health and disease: a review. Crit Rev Food Sci 37(3):211–228

    Article  CAS  Google Scholar 

  14. Surai PF (2002) Selenium in pou1try nutrition 2. Reprodiction, egg and meat quality and practical applications. World Poultry Sci J 58:431–450

    Article  Google Scholar 

  15. Adler V, Pincus MR, Posner S, Upadhyaya P, El-Bayoumy K et al (1996) Effects of chemo preventive selenium compounds on Jun N-kinase activities. Carcinogenesis 17:1849–1854

    Article  PubMed  CAS  Google Scholar 

  16. Hoffmann PR (2007) Mechanisms by which selenium influences immune responses. Arch Immunol Ther Ex 55(5):289–297

    Article  CAS  Google Scholar 

  17. Faist V, König J, Höger H, Elmadfa I (2001) Decrease mitochondrial oxygen consumption and antioxidant enzyme activities in skeletal muscle of dystrophic mice after low-intensity exercise. Ann Nut Metab 45(2):58–66

    Article  CAS  Google Scholar 

  18. Reddish JM, Latshaw JD, St-Pierre NR, Pretzman C, Wick M (2005) Myosin heavy chain isoform expression is not altered in the pectoralis major muscle in Se-deficient chickens recovering from exudative diathetic myopathy. Poultry Sci 84(3):462

    CAS  Google Scholar 

  19. Mates JM, Perez-Gomez C, De Castro IN (1999) Antioxidant enzymes and human diseases. Clin Biochem 32:595–603

    Article  PubMed  CAS  Google Scholar 

  20. Georgieva NV, Koinarski V, Gadjeva V (2006) Antioxidant status during the course of an Eimeria tenella infection in broiler chickens. Vet J 172:488–492

    Article  PubMed  CAS  Google Scholar 

  21. Gadjeva V, Dimov A, Georgieva N (2008) Influence of therapy on the antioxidant status in patients with melanoma. J Clin Pharm Ther 33(2):179–185

    Article  PubMed  CAS  Google Scholar 

  22. MizunoY (1984) Superoxide dismutase activity in early stages of development in normal and dystrophic chickens. Life Sci 34(10):909–914

    Article  Google Scholar 

  23. Osame S, Ohtani T, Ichijo S (1990) Studies on serum tocopherol and selenium levels and blood glutathione peroxidase activities in lambs with muscle disease. Nippon Juigaku Zasshi 52(4):705–710

    PubMed  CAS  Google Scholar 

  24. Kaczor JJ, Hall JE, Payne E, Tarnopolsky MA (2007) Low intensity training decreases markers of oxidative stress in skeletal muscle of mdx mice. Free Radical Biol Med 43(1):145–154

    Article  CAS  Google Scholar 

  25. Koinarski V, Georgieva N, Gadjeva V, Petkov P (2005) Antioxidant status of broiler chickens, infected with Eimeria acervulina. Rev Med Vet-Toulouse 156(10):498–502

    CAS  Google Scholar 

  26. Anonymous (2006) Act 44/20.04.2006 for veterinary medical requirements of animal rearing facilities. Official Gazette 41(7):57–58, Bulgarian

    Google Scholar 

  27. Placer ZA, Cushman LL, Jonson BC (1966) Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems. Anal Biochem 16:359–364

    Article  PubMed  CAS  Google Scholar 

  28. Sun Y, Oberley LW, Li (1988) A simple method for clinical assay of superoxide dismutase. Clin Chem 34:497

    PubMed  CAS  Google Scholar 

  29. Beers R, Sizer Т (1974) Spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195:133–138

    Google Scholar 

  30. Mahoney JJ, Vreman HJ, Stevenson DK, Van Vessel AL (1993) Measurements of carboxyhaemoglobin by five spectrophotometers (cooximeters) in comparison with reference methods. Clin Chem 39:1693

    PubMed  CAS  Google Scholar 

  31. Kühn H, Borchert A (2002) Regulation of enzymatic lipid peroxidation: the interplay of peroxidizing and peroxide reducing enzymes. Free Radical Biol Med 33(2):154–172

    Article  Google Scholar 

  32. Popova M, Popov C (2002) Damage to subcellular structures evoked by lipid peroxidation. Z Naturforsch C 57(3–4):361–365

    PubMed  CAS  Google Scholar 

  33. Abuja PM, Albertini R (2001) Methodsfor monitoring oxidative stress, lipid peroxidation and oxidation resistance of lipoproteins. Clin Chim Acta 306:1–17

    Article  PubMed  CAS  Google Scholar 

  34. Gutteridge JMC (1995) Lipid peroxidation and antioxidant as biomarkers of tissue damage. Clin Chem 41(12):1819–1828

    PubMed  CAS  Google Scholar 

  35. Devi GS, Prasad MH, Saraswathi I, Raghu D, Rao DN et al (2000) Free radicals antioxidant enzymes and lipid peroxidation in different types of leukemias. Clin Chim Acta 293:53–62

    Article  PubMed  CAS  Google Scholar 

  36. Miller JK, Brzezinska-Slebodzinska E, Madsen FC (1993) Oxidative stress, antioxidants, and animal function. J Dairy Sci 76:2812–2823

    Article  PubMed  CAS  Google Scholar 

  37. Cave AC, Brewer AC, Narayanapanicker A, Ray R, Grieve DJ et al (2006) NADPH oxidases in cardiovascular health and disease. Antiox Redox Sign 8(5):691–728

    Article  CAS  Google Scholar 

  38. Bozkaya LA, Ozturk-Urek R, Aydemir T, Tarhan L (2001) Effects of Se, Cu and Se + vitamin E deficiency on the activities of CuZnSOD, GSH-Px, CAT and LPO levels in chicken erythrocytes. Cell Biochem Funct 19(3):153–157

    Article  PubMed  CAS  Google Scholar 

  39. Avanzo JL, Mendonca CX Jr, de Cesar MdeC (2002) Role of antioxidant systems in induced nutritional pancreatic atrophy in chicken. Comp Biochem Phys B 131(4):815–823

    Article  Google Scholar 

  40. Kono Y, Fridovich I (1982) Superoxide radical inhibits catalase*. J Biol Chem 257(10):5751–5754

    PubMed  CAS  Google Scholar 

  41. Yu BP (1994) Cellular defences against reactive oxygen species. Physiol Rev 74(1):139–159

    PubMed  CAS  Google Scholar 

  42. Bannister JV, Bannister WH, Rotillio G (1987) Aspects of the structure, function, and applications of superoxide dismutase. CRC Cr Rev Bioch Mol 22:111–180

    Article  CAS  Google Scholar 

  43. Isler M, Delibas N, Guclu M, Gultekin F, Sutcu R et al (2002) Superoxid dismutase and glutathione peroxidase in erythrocytes of patients with iron deficiency anemia: effect of different treatment modalities. Croat Med J 43:16

    PubMed  Google Scholar 

  44. Speranza MJ, Bagley AC, Lynch RE (1993) Cells enriched for catalase are sensitized to the toxicities of bleomycin, adriamycin, and paraquat. J Biol Chem 268:19039–19043

    PubMed  CAS  Google Scholar 

  45. Georgieva NV (2005) Oxidative stress as a factor of disrupted ecological oxidative balance in biological systems—a review. BJVM 8(1):1–11

    Google Scholar 

  46. Hawkes WC, Alkan Z (2010) Regulation of redox signalling by selenoproteins. Biol Trace Elem Res 134:235–251

    Article  PubMed  CAS  Google Scholar 

  47. Prabhu KS, Zamamiri-Davis F, Stewart JB, Thompson JT, Sordillo LM et al (2002) Selenium deficiency increases the expression of inducible nitric oxide synthase in RAW 264.7 macrophages: role of nuclear factor-kappaB in up-regulation. Biochem J 366:203–209

    PubMed  CAS  Google Scholar 

  48. Nunes AV, Gozzo AJ, Juliano MA, Cesar MC, Sampaio MU et al (2003) Antioxidant dietary deficiency induces caspase activation in chicken skeletal muscle cells. Braz J Med Biol Res 36(8):1047–1053

    Article  PubMed  CAS  Google Scholar 

  49. Hu ML, Tappel AL (1987) Selenium as a sulfhydryl redox catalyst and survey of potential selenium-dependent enzymes. J Inorg Biochem 30(3):239–248

    Article  PubMed  CAS  Google Scholar 

  50. Zamamiri-Davis F, Lu Y, Thompson JT, Prabhu KS, Reddy PV et al (2002) Nuclear factor-κB mediates over-expression of cyclooxygenase-2 during activation of RAW 264.7 macrophages in selenium deficiency. Free Radical Biol Med 32(9):890–897

    Article  CAS  Google Scholar 

  51. Riordan JF (1976) Biochemistry of zinc. In: Symposium on Trace Elements. Med Clin N Am 60 (4):661–674

  52. Gálvez-MorrosM GM, López-Gálvez D, García-Martínez O (1995) Comparison of the effects of basic and neutral zinc salts on chicks infected with Ascaridia galli. Vet Parasitol 56(1–3):199–205

    Article  Google Scholar 

  53. Stoyanchev K, Petkov P, Kirov K, Tsokova L, Kanakov D (2005) Blood levels of some macro and trace elements in muscular dystrophy turkey-broilers reared under the condition of high animal welfare or stress. Trakia J Sci 4(1):37–42

    Google Scholar 

  54. Andonova M, Borisov I, Sotirov L (2001) Changes in some factors of the innate immunity and serum zinc and iron concentrations in pigs following intravenous administration of Escherichia coli lipopolysaccharide. Onderstepoort J Vet Res 68:91–99

    PubMed  CAS  Google Scholar 

  55. Hemilä H, Virtamo J, Albanes D, Kaprio J (2006) The effect of vitamin E on common cold incidence is modifies by age, smoking and residential neighbourhood. J Am Coll Nutr 25(4):332–339

    PubMed  Google Scholar 

  56. Rayman MP (2000) The importance of selenium to human health. Lancet 356:233–241

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nedyalka V. Georgieva.

Additional information

The authors have no financial or other conflicting interest in any product or service mentioned in this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Georgieva, N.V., Stoyanchev, K., Bozakova, N. et al. Combined Effects of Muscular Dystrophy, Ecological Stress, and Selenium on Blood Antioxidant Status in Broiler Chickens. Biol Trace Elem Res 142, 532–545 (2011). https://doi.org/10.1007/s12011-010-8782-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-010-8782-2

Keywords

Navigation