Skip to main content
Log in

Effects of Copper Sources and Levels on Lipid Profiles, Immune Parameters, Antioxidant Defenses, and Trace Element Residues in Broilers

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The study was conducted to investigate the effects of copper sources and levels on lipid profiles, immune parameters, antioxidant defenses, and trace element contents of meat and liver in Arbor Acres broilers. A total of 504 male broilers were randomly divided into 7 groups with 6 replicates per group and 12 broilers per replicate. The experiment was used in a 3 × 2 + 1 factorial experiment design; broilers in the control group were fed a basal diet, and broilers in the other six groups were fed basal diets supplemented with 3 sources (copper sulfate, tribasic copper chloride, and copper methionate) and 2 levels (10 and 20 mg/kg). The results showed that the levels of cholesterol and low-density lipoprotein cholesterol in broilers were significantly decreased with the increase of dietary copper level (P < 0.05). Serum IL-6 and IgA contents, ceruloplasmin and GSH-Px activities, and liver copper contents of broilers increased significantly with dietary copper levels (P < 0.05). Compared with the control group, dietary copper supplementation significantly decreased serum cholesterol (P < 0.05) and significantly increased serum IL-6, ceruloplasmin, SOD, GSH-Px, and liver copper (P < 0.05). Dietary supplementation of basic copper chloride and copper methionate significantly decreased low-density lipoprotein cholesterol content and liver iron content (P < 0.05). In conclusion, dietary copper supplementation can effectively reduce serum cholesterol content and improve immune and antioxidant functions in broilers. Adding 20 mg/kg copper to broiler diet can increase the copper content in the liver, but it will not affect the copper content in the chicken.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Correa LB, Zanetti MA, Del Claro GR, de Melo MP, Rosa AF, Saran Netto A (2012) Effect of supplementation of two sources and two levels of copper on lipid metabolism in Nellore beef cattle. Meat Sci 91(4):466–471. https://doi.org/10.1016/j.meatsci.2012.02.033

    Article  CAS  PubMed  Google Scholar 

  2. Braude R (1945) Some observations on the need for copper in the diet of fattening pigs. J Agric Sci 35(3):163–167. https://doi.org/10.1017/S0021859600049170

    Article  CAS  Google Scholar 

  3. Wu XZ, Zhang TT, Guo JG, Liu Z, Yang FH, Gao XH (2015) Copper bioavailability, blood parameters, and nutrient balance in mink. J Anim Sci 93(1):176–184. https://doi.org/10.2527/jas.2014-8026

    Article  CAS  PubMed  Google Scholar 

  4. Olukosi OA, van Kuijk S, Han Y (2018) Copper and zinc sources and levels of zinc inclusion influence growth performance, tissue trace mineral content, and carcass yield of broiler chickens. Poult Sci 97:pey247. https://doi.org/10.3382/ps/pey247

    Article  CAS  Google Scholar 

  5. Ognik K, Sembratowicz I, Cholewińska E, Jankowski J, Kozłowski K, Juśkiewicz J, Zduńczyk Z (2018) The effect of administration of copper nanoparticles to chickens in their drinking water on the immune and antioxidant status of the blood. Anim Sci J 89(3):579–588. https://doi.org/10.1111/asj.12956

    Article  CAS  PubMed  Google Scholar 

  6. Echeverry H, Yitbarek A, Munyaka P, Alizadeh M, Cleaver A, Camelo-Jaimes G, Wang P, O K, Rodriguez-Lecompte JC (2016) Organic trace mineral supplementation enhances local and systemic innate immune responses and modulates oxidative stress in broiler chickens. Poult Sci 95(3):518–527. https://doi.org/10.3382/ps/pev374

    Article  CAS  PubMed  Google Scholar 

  7. Hu Y, Cheng H, Tao S (2017) Environmental and human health challenges of industrial livestock and poultry farming in China and their mitigation. Environ Int 107:111–130. https://doi.org/10.1016/j.envint.2017.07.003

    Article  CAS  PubMed  Google Scholar 

  8. Zhao Y, Wang D, Yang S (2016) Effect of organic and conventional rearing system on the mineral content of pork. Meat Sci 118:103–107. https://doi.org/10.1016/j.meatsci.2016.03.030

    Article  CAS  PubMed  Google Scholar 

  9. Wu X, Liu Z, Zhang T, Yang Y, Yang F, Gao X (2014) Effects of dietary copper on nutrient digestibility, tissular copper deposition and fur quality of growing-furring mink (Mustela vison). Biol Trace Elem Res 158(2):166–175. https://doi.org/10.1007/s12011-014-9933-7

    Article  CAS  PubMed  Google Scholar 

  10. Wu X, Zhang T, Liu Z, Zheng J, Guo J, Yang F, Gao X (2014) Effects of different sources and levels of copper on growth performance, nutrient digestibility, and elemental balance in young female mink (Mustela vison). Biol Trace Elem Res 160(2):212–221. https://doi.org/10.1007/s12011-014-0054-0

    Article  CAS  PubMed  Google Scholar 

  11. Nawrocka A, Posyniak A, Sell B, Giergiel M, Durkalec MM, Stolarska I (2018) Ingestion of bedding material as a cause of acute copper sulfate poisoning in turkey poults. Poult Sci 98(2):707–711. https://doi.org/10.3382/ps/pey430

    Article  PubMed Central  Google Scholar 

  12. Gowanlock DW, Mahan DC, Jolliff JS, Hill GM (2015) Evaluating the influence of National Research Council levels of copper, iron, manganese, and zinc using organic (Bioplex) minerals on resulting tissue mineral concentrations, metallothionein, and liver antioxidant enzymes in grower-finisher swine diets. J Anim Sci 93(3):1149–1156. https://doi.org/10.2527/jas.2014-8173

    Article  CAS  PubMed  Google Scholar 

  13. Littell RC, Henry PR, Lewis AJ, Ammerman CB (1997) Estimation of relative bioavailability of nutrients using SAS procedures. J Anim Sci 75(10):2672–2683. https://doi.org/10.2527/1997.75102672x

    Article  CAS  PubMed  Google Scholar 

  14. Chen QL, Luo Z, Wu K, Huang C, Zhuo MQ, Song YF, Hu W (2015) Differential effects of dietary copper deficiency and excess on lipid metabolism in yellow catfish Pelteobagrus fulvidraco. Comp Biochem Physiol B Biochem Mol Biol 184:19–28. https://doi.org/10.1016/j.cbpb.2015.02.004

    Article  CAS  PubMed  Google Scholar 

  15. Wu X, Dai S, Hua J, Hu H, Wang S, Wen A (2018) Influence of dietary copper methionine concentrations on growth performance, digestibility of nutrients, serum lipid profiles, and immune defenses in broilers. Biol Trace Elem Res. https://doi.org/10.1007/s12011-018-1594-5

    Article  Google Scholar 

  16. Leeson S (2009) Copper metabolism and dietary needs. Worlds Poult Sci J 65(3):353–366. https://doi.org/10.1017/S0043933909000269

    Article  Google Scholar 

  17. Li C-D, Xu Q, Gu R-X, Qu J, Wei D-Q (2017) The dynamic binding of cholesterol to the multiple sites of C99: as revealed by coarse-grained and all-atom simulations. Phys Chem Chem Phys 19(5):3845–3856. https://doi.org/10.1039/C6CP07873G

    Article  CAS  PubMed  Google Scholar 

  18. Gil-Ramírez A, Morales D, Soler-Rivas C (2018) Molecular actions of hypocholesterolaemic compounds from edible mushrooms. Food Funct 9(1):53–69. https://doi.org/10.1039/C7FO00835J

    Article  PubMed  Google Scholar 

  19. Kim S, Chao PY, Allen KG (1992) Inhibition of elevated hepatic glutathione abolishes copper deficiency cholesterolemia. FASEB J 6(7):2467–2471. https://doi.org/10.1096/fasebj.6.7.1563598

    Article  CAS  PubMed  Google Scholar 

  20. Konjufca VH, Pesti GM, Bakalli RI (1997) Modulation of cholesterol levels in broiler meat by dietary garlic and copper. Poult Sci 76(9):1264–1271. https://doi.org/10.1093/ps/76.9.1264

    Article  CAS  PubMed  Google Scholar 

  21. Engle TE (2011) Copper and lipid metabolism in beef cattle: a review. J Anim Sci 89(2):591–596. https://doi.org/10.2527/jas.2010-3395

    Article  CAS  PubMed  Google Scholar 

  22. NRC (1994) Nutrient requirements of poultry, 9th edn. National Academies Press, Washington, DC

    Google Scholar 

  23. Olivares RWI, Postma GC, Schapira A, Iglesias DE, Valdez LB, Breininger E, Gazzaneo PD, Minatel L (2019) Biochemical and morphological alterations in hearts of copper-deficient bovines. Biol Trace Elem Res 189(2):447–455. https://doi.org/10.1007/s12011-018-1476-x

    Article  CAS  PubMed  Google Scholar 

  24. Hong F, Yu X, Wu N, Zhang Y-Q (2017) Progress of in vivo studies on the systemic toxicities induced by titanium dioxide nanoparticles. Toxicol Res 6(2):115–133. https://doi.org/10.1039/C6TX00338A

    Article  CAS  Google Scholar 

  25. Xu E, Pereira MMA, Karakasilioti I, Theurich S, Al-Maarri M, Rappl G, Waisman A, Wunderlich FT, Brüning JC (2017) Temporal and tissue-specific requirements for T-lymphocyte IL-6 signalling in obesity-associated inflammation and insulin resistance. Nat Commun 8:14803

  26. Wang C, Wang MQ, Ye SS, Tao WJ, Du YJ (2011) Effects of copper-loaded chitosan nanoparticles on growth and immunity in broilers. Poult Sci 90(10):2223–2228. https://doi.org/10.3382/ps.2011-01511

    Article  CAS  PubMed  Google Scholar 

  27. Wu M, Han F, Gong W, Feng L, Han J (2016) The effect of copper from water and food: changes of serum nonceruloplasmin copper and brain’s amyloid-beta in mice. Food Funct 7(9):3740–3747. https://doi.org/10.1039/C6FO00809G

    Article  CAS  PubMed  Google Scholar 

  28. Suttle N (2010) Mineral nutrition of livestock. CABI

  29. Kim JW, Kil DY (2015) Determination of relative bioavailability of copper in tribasic copper chloride to copper in copper sulfate for broiler chickens based on liver and feather copper concentrations. Anim Feed Sci Technol 210:138–143. https://doi.org/10.1016/j.anifeedsci.2015.09.022

    Article  CAS  Google Scholar 

  30. Guclu BK, Kara K, Beyaz L, Uyanik F, Eren M, Atasever A (2008) Influence of dietary copper proteinate on performance, selected biochemical parameters, lipid peroxidation, liver, and egg copper content in laying hens. Biol Trace Elem Res 125(2):160–169. https://doi.org/10.1007/s12011-008-8164-1

    Article  CAS  PubMed  Google Scholar 

  31. Wu X, Gao X, Yang F (2015) Effects of dietary copper on organ indexes, tissular Cu, Zn and Fe deposition and fur quality of growing-furring male mink (Mustela vison). J Anim Sci Technol 57:6. https://doi.org/10.1186/s40781-015-0040-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu Z, Wu X, Zhang T, Cui H, Guo J, Guo Q, Gao X, Yang F (2016) Influence of dietary copper concentrations on growth performance, serum lipid profiles, antioxidant defenses, and fur quality in growing–furring male blue foxes (Vulpes lagopus)1. J Anim Sci 94(3):1095–1104. https://doi.org/10.2527/jas.2015-9960

    Article  CAS  PubMed  Google Scholar 

  33. Liu Z, Wu X, Zhang T, Guo J, Gao X, Yang F, Xing X (2015) Effects of dietary copper and zinc supplementation on growth performance, tissue mineral retention, antioxidant status, and fur quality in growing-furring blue foxes (Alopex lagopus). Biol Trace Elem Res 168(2):401–410. https://doi.org/10.1007/s12011-015-0376-6

    Article  CAS  PubMed  Google Scholar 

  34. NRC (2005) Mineral tolerance of animals, 2th edn. National Academies Press, Washington, DC

    Google Scholar 

  35. Hill GM, Link JE (2009) Transporters in the absorption and utilization of zinc and copper. J Anim Sci 87(14 Suppl):E85–E89. https://doi.org/10.2527/jas.2008-1341

    Article  CAS  PubMed  Google Scholar 

  36. Hill GM, Shannon MC (2019) Copper and zinc nutritional issues for agricultural animal production. Biol Trace Elem Res 188(1):148–159. https://doi.org/10.1007/s12011-018-1578-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ognik K, Stepniowska A, Cholewinska E, Kozlowski K (2016) The effect of administration of copper nanoparticles to chickens in drinking water on estimated intestinal absorption of iron, zinc, and calcium. Poult Sci 95(9):2045–2051. https://doi.org/10.3382/ps/pew200

    Article  CAS  PubMed  Google Scholar 

  38. Mahan DC, Ching S, Dabrowski K (2004) Developmental aspects and factors influencing the synthesis and status of ascorbic acid in the pig. Annu Rev Nutr 24:79–103. https://doi.org/10.1146/annurev.nutr.24.012003.132150

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The funding for this study was from High-level Talents Introduction Project of Anhui Institute of Science and Technology (DKYJ201701), Natural Science Foundation of Anhui Province of China (1708085QC74), Chuzhou Science and Technology Project (2018ZN014), and the fund of Natural Science Foundation in Higher Education of Anhui, China (KJ2018A0535).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mingxia Zhu or Qingkui Jiang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Zhu, M., Jiang, Q. et al. Effects of Copper Sources and Levels on Lipid Profiles, Immune Parameters, Antioxidant Defenses, and Trace Element Residues in Broilers. Biol Trace Elem Res 194, 251–258 (2020). https://doi.org/10.1007/s12011-019-01753-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-019-01753-z

Keywords

Navigation