Skip to main content
Log in

Collision/Reaction Cell ICP-MS with Shielded Torch and Sector Field ICP-MS for the Simultaneous Determination of Selenium Isotopes in Biological Matrices

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The determinations of selenium isotopes in biological samples were performed using both inductively coupled plasma collision/reaction cell quadruple mass spectrometer (CRC-ICP-QMS) and inductively coupled plasma sector field mass spectrometers (SF-ICP-MS). To significantly decrease the argon-based interferences at m/z 74 (36Ar38Ar), 76 (38Ar38Ar, 40Ar36Ar), 78 (38Ar40Ar), and 80 (40Ar40Ar), the gas-flow rates of a helium and hydrogen mixture used in the collision cell were optimized to 1.0 mL/min H2 and 3.5 mL/min He. Under the optimized condition, the precisions for natural selenium isotope ratio measurements of both instruments were evaluated and compared using 100 ppb Se standard solution. A modified external calibration quantification method was applied for the simultaneous determination of clinically used enriched selinocompounds (77Se-selenate, 82Se-selenite, 76Se-methylseleninic acidIV, 78Se-methylselenonic acidVI) and to examine their fate in rat organs (liver, kidney, and lung).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Xiang N, Zhao R, Zhong W (2009) Sodium selenite induces apoptosis by generation of superoxide via the mitochondrial-dependent pathway in human prostate cancer cells. Cancer Chemother Pharmacol 63:351–362

    Article  PubMed  CAS  Google Scholar 

  2. Rudolf E, Rudolf K, Červinka M (2008) Selenium activates p53 and p38 pathways and induces caspase-independent cell death in cervical cancer cells. Cell Biol Toxicol 24:123–141

    Article  PubMed  CAS  Google Scholar 

  3. Arsova-Sarafinovska Z, Matevska N, Eken A, Petrovski D, Banev S, Dzikova S, Georgiev V, Sikole A, Erdem O, Sayal H, Aydin H, Dimovski AJ (2009) Glutathione peroxidase 1 (GPX1) genetic polymorphism, erythrocyte GPX activity, and prostate cancer risk. Int Urol Nephrol 41:63–70

    Article  PubMed  CAS  Google Scholar 

  4. Abdulah R, Miyazaki K, Nakazawa M, Koyama H (2005) Chemical forms of selenium for cancer prevention. J Trace Elem Med Bio 19:141–150

    Article  CAS  Google Scholar 

  5. Combs GF Jr, Clark LC, Turnbull BW (2001) An analysis of cancer prevention by selenium. BioFactors 14:153–159

    Article  PubMed  CAS  Google Scholar 

  6. Combs GF Jr, Clark LC, Turnbull BW (1997) Reduction of cancer risk with an oral supplement of selenium. Biomed Environ Sci 10:227–234

    PubMed  Google Scholar 

  7. Finley JW, Ip C, Lisk DJ, Davis CD, Hintze KJ, Whanger PD (2001) Cancer-protective properties of high-selenium broccoli. J Agric Food Chem 49:2679–2683

    Article  PubMed  CAS  Google Scholar 

  8. Hail N Jr, Cortes M, Drake EN, Spallholz JE (2008) Cancer chemoprevention: a radical perspective. Free Radic Biol Med 45:97–110

    Article  PubMed  CAS  Google Scholar 

  9. Ip C, Thompson HJ, Zhu Z, Ganther HE (2000) In vitro and in vivo studies of methylseleninic acid: evidence that a monomethylated selenium metabolite is critical for cancer chemoprevention. Cancer Res 60:2882–2886

    PubMed  CAS  Google Scholar 

  10. Kobayashi Y, Ogra Y, Suzuki KT (2001) Speciation and metabolism of selenium injected with 82Se-enriched selenite and selenate in rats. J Chromatogr B Biomed Sci Appl 760:73–81

    Article  PubMed  CAS  Google Scholar 

  11. Suzuki KT, Itoh M (1997) Metabolism of selenite labelled with enriched stable isotope in the bloodstream. J Chromatogr B Biomed Sci Appl 692:15–22

    Article  PubMed  CAS  Google Scholar 

  12. Suzuki KT, Tsuji Y, Ohta Y, Suzuki N (2008) Preferential organ distribution of methylselenol source Se-methylselenocysteine relative to methylseleninic acid. Toxicol Appl Pharmacol 227:76–83

    Article  PubMed  CAS  Google Scholar 

  13. Suzuki KT, Doi C, Suzuki N (2006) Metabolism of 76Se-methylselenocysteine compared with that of 77Se-selenomethionine and 82Se-selenite. Toxicol Appl Pharmacol 217:185–195

    Article  PubMed  CAS  Google Scholar 

  14. Suzuki KT, Somekawa L, Kurasaki K, Suzuki N (2006) Absolute labeling and simultaneous speciation in tracer experiments with multiple stable isotopes. J Health Sci 52:590–597

    Article  CAS  Google Scholar 

  15. Suzuki KT, Somekawa L, Kurasaki K, Suzuki N (2006) Simultaneous tracing of 76Se-selenite and 77Se-selenomethionine by absolute labeling and speciation. Toxicol Appl Pharmacol 217:43–50

    Article  PubMed  CAS  Google Scholar 

  16. Suzuki KT, Kurasaki K, Okazaki N, Ogra Y (2005) Selenosugar and trimethylselenonium among urinary Se metabolites: dose- and age-related changes. Toxicol Appl Pharmacol 206:1–8

    Article  PubMed  CAS  Google Scholar 

  17. Suzuki KT, Kurasaki K, Ogawa K, Suzuki N (2006) Metabolic transformation of methylseleninic acid through key selenium intermediate selenide. Toxicol Appl Pharmacol 215:189–197

    Article  PubMed  CAS  Google Scholar 

  18. Suzuki KT, Ohta Y, Suzuki N (2006) Availability and metabolism of 77Se-methylseleninic acid compared simultaneously with those of three related selenocompounds. Toxicol Appl Pharmacol 217:51–62

    Article  PubMed  CAS  Google Scholar 

  19. Tinggi U, Gianduzzo T, Francis R, Nicol D, Shahin M, Scheelings P (2004) Determination of selenium in red blood cells by inductively coupled plasma mass spectrometry (ICP-MS) after microwave digestion. J Rad Nucl Chem 259:469–472

    Article  CAS  Google Scholar 

  20. Elwaer N, Hintelmann H (2008) Comparing the precision of selenium isotope ratio measurements using collision cell and sector field inductively coupled plasma mass spectrometry. Talanta 75:205–214

    PubMed  CAS  Google Scholar 

  21. Infante HG, Bendito MCO, Cámara C, Evans L, Hearn R, Moesgaard S (2008) Isotope dilution quantification of ultratrace gamma-glutamyl-Se-methylselenocysteine species using HPLC with enhanced ICP-MS detection by ultrasonic nebulisation or carbon-loaded plasma. Anal Bioanal Chem 390:2099–2106

    Article  Google Scholar 

  22. Belshaw NS, Zhu XK, Guo Y, O’Nions RK (2000) High precision measurement of iron isotopes by plasma source mass spectrometry. Int J Mass Spectrom 197:191–195

    Article  CAS  Google Scholar 

  23. Batista BL, Rodrigues JL, Nunes JA, Souza VCO, Barbosa F Jr (2009) Exploiting dynamic reaction cell inductively coupled plasma mass spectrometry (DRC-ICP-MS) for sequential determination of trace elements in blood using a dilute-and-shoot procedure. Anal Chim Acta 639:13–18

    Article  PubMed  CAS  Google Scholar 

  24. Bednar AJ, Kirgan RA, Jones WT (2009) Comparison of standard and reaction cell inductively coupled plasma mass spectrometry in the determination of chromium and selenium species by HPLC-ICP-MS. Anal Chim Acta 632:27–34

    Article  PubMed  CAS  Google Scholar 

  25. Larsen EH, Sloth J, Hansen M, Moesgaard S (2003) Selenium speciation and isotope composition in Se-77-enriched yeast using gradient elution HPLC separation and ICP-dynamic reaction cell-MS. J Anal At Spectrom 18:310–316

    Article  CAS  Google Scholar 

  26. Sloth JJ, Larsen EH (2000) The application of inductively coupled plasma dynamic reaction cell mass spectrometry for measurement of selenium isotopes, isotope ratios and chromatographic detection of selenoamino acids. J Anal At Spectrom 15:669–672

    Article  CAS  Google Scholar 

  27. Sloth JJ, Larsen EH, Bugel SH, Moesgaard S (2003) Determination of total selenium and Se in isotopically enriched human samples by ICP-dynamic reaction cell-MS. J Anal At Spectrom 18:317–322

    Article  CAS  Google Scholar 

  28. Boulyga SF, Becker JS (2001) ICP-MS with hexapole collision cell for isotope ratio measurements of Ca, Fe, and Se. Fresenius' J Anal Chem 370:618–623

    Article  CAS  Google Scholar 

  29. Ogra Y, Ishiwata K, Suzuki KT (2005) Effects of deuterium in octopole reaction and collision cell ICP-MS on detection of selenium in extracellular fluids. Anal Chim Acta 554:123–129

    Article  CAS  Google Scholar 

  30. Schaumlöffel D, Bierla K, Lobinski R (2007) Accurate determination of selenium in blood serum by isotope dilution analysis using inductively coupled plasma collision cell mass spectrometry with xenon as collision gas. J Anal At Spectrom 22:318–321

    Article  Google Scholar 

  31. Darrouzés J, Bueno M, Lespés G, Holeman M, Potin-Gautier M (2007) Optimisation of ICPMS collision/reaction cell conditions for the simultaneous removal of argon based interferences of arsenic and selenium in water samples. Talanta 71:2080–2084

    Article  PubMed  Google Scholar 

  32. Darrouzès J, Bueno M, Lespès G, Potin-Gautier M (2005) Operational optimisation of ICP - Octopole collision/reaction cell - MS for applications to ultra-trace selenium total and speciation determination. J Anal At Spectrom 20:88–94

    Article  Google Scholar 

  33. Huerta VD, Reyes LH, Marchante-Gayón JM, Sánchez MLF, Sanz-Medel A (2003) Total determination and quantitative speciation analysis of selenium in yeast and wheat flour by isotope dilution analysis ICP-MS. J Anal Atom Spectrom 18:1243–1247

    Article  Google Scholar 

  34. IUPAC (1997) Commission on atomic weights and isotopic abundances. Pure Appl Chem 69:2384

    Google Scholar 

  35. Dufailly V, Noël L, Guèrin T (2006) Determination of chromium, iron and selenium in foodstuffs of animal origin by collision cell technology, inductively coupled plasma mass spectrometry (ICP-MS) after closed vessel microwave digestion. Anal Chim Acta 65:214–221

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed A. Amr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Saad, K.A., Amr, M.A. & Helal, A.I. Collision/Reaction Cell ICP-MS with Shielded Torch and Sector Field ICP-MS for the Simultaneous Determination of Selenium Isotopes in Biological Matrices. Biol Trace Elem Res 140, 103–113 (2011). https://doi.org/10.1007/s12011-010-8677-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-010-8677-2

Keywords

Navigation