Skip to main content

Advertisement

Log in

Sodium selenite induces apoptosis by generation of superoxide via the mitochondrial-dependent pathway in human prostate cancer cells

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Studies have demonstrated that selenium supplementation reduces the incidence of cancer, particularly prostate cancer. Evidence from experimental studies suggests that apoptosis is a key event in cancer chemoprevention by selenium and reactive oxygen species play a role in induction of apoptosis by selenium compounds. The current study was designed to investigate the role of superoxide and mitochondria in selenite-induced apoptosis in human prostate cancer cells.

Methods

LNCaP cells were transduced with adenoviral constructs to overexpress four primary antioxidant enzymes: manganese superoxide dismutase (MnSOD), copper-zinc superoxide dismutase (CuZnSOD), catalase (CAT), or glutathione peroxidase 1 (GPx1). Cell viability, apoptosis, and superoxide production induced by sodium selenite were analyzed by the MTT assay, chemiluminescence, flow cytometry, western blot analysis, and Hoechst 33342 staining following overexpression of these antioxidant enzymes.

Results

Our study shows the following results: (1) selenite induced cancer cell death and apoptosis by producing superoxide radicals; (2) selenite-induced superoxide production, cell death, and apoptosis were inhibited by overexpression of MnSOD, but not by CuZnSOD, CAT, or GPx1; and (3) selenite treatment resulted in a decrease in mitochondrial membrane potential, release of cytochrome c into the cytosol, and activation of caspases 9 and 3, events that were suppressed by overexpression of MnSOD.

Conclusions

This study demonstrates that selenite induces cell death and apoptosis by production of superoxide in mitochondria and activation of the mitochondrial apoptotic pathway and MnSOD plays an important role in protection against prooxidant effects of superoxide from selenite. The data suggest that superoxide production in mitochondria is, at least in part, a key event in selenium-induced apoptosis in prostate cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Combs GF Jr, Gray WP (1998) Chemopreventive agents: selenium. Pharmacol Ther 79:179–192

    Article  PubMed  CAS  Google Scholar 

  2. Ganther HE (1999) Selenium metabolism, selenoproteins and mechanisms of cancer prevention: complexities with thioredoxin reductase. Carcinogenesis 20:1657–1666

    Article  PubMed  CAS  Google Scholar 

  3. Ip C (1998) Lessons from basic research in selenium and cancer prevention. J Nutr 128:1845–1854

    PubMed  CAS  Google Scholar 

  4. Clark LC, Combs GF Jr, Turnbull BW, Slate EH, Chalker DK, Chow J, Davis LS, Glover RA, Graham GF, Gross EG, Krongrad A, Lesher JL Jr, Park HK, Sanders BB Jr, Smith CL, Taylor JR (1996) Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin. A randomized controlled trial. Nutritional Prevention of Cancer Study Group. J Am Med Assoc 276:1957–1963

    Article  CAS  Google Scholar 

  5. Combs GF (2004) Status of selenium in prostate cancer prevention. Br J Cancer 91:195–199

    PubMed  CAS  Google Scholar 

  6. Yoshizawa K, Willett WC, Morris SJ, Stampfer MJ, Spiegelman D, Rimm EB, Giovannucci E (1998) Study of prediagnostic selenium level in toenails and the risk of advanced prostate cancer. J Natl Cancer Inst 90:1219–1224

    Article  PubMed  CAS  Google Scholar 

  7. Li HJ, Stampfer MJ, Giovannucci EL, Morris JS, Willett WC, Gaziano JM, Ma J (2004) A prospective study of plasma selenium levels and prostate cancer risk. J Natl Cancer Inst 96:696–703

    Article  PubMed  CAS  Google Scholar 

  8. Brooks JD, Metter EJ, Chan DW, Sokoll LJ, Landis P, Nelson WG, Muller D, Andres R, Carter HB (2001) Plasma selenium level before diagnosis and the risk of prostate cancer development. J Urol 166:2034–2038

    Article  PubMed  CAS  Google Scholar 

  9. Klein EA, Thompson IM, Lippman SM, Goodman PJ, Albanes D, Taylor PR, Coltman C (2001) SELECT: the next prostate cancer prevention trial. J Urol 166:1311–1315

    Article  PubMed  CAS  Google Scholar 

  10. Sinha R, El-Bayoumy K (2004) Apoptosis is a critical cellular event in cancer chemoprevention and chemotherapy by selenium compounds. Curr Cancer Drug Targets 4:13–28

    Article  PubMed  CAS  Google Scholar 

  11. Spallholz JE (1994) On the nature of selenium toxicity and carcinostatic activity. Free Radic Biol Med 17:45–64

    Article  PubMed  CAS  Google Scholar 

  12. Stewart MS, Spallholz JE, Neldner KH, Pence BC (1999) Selenium compounds have disparate abilities to impose oxidative stress and induce apoptosis. Free Radic Biol Med 26:42–48

    Article  PubMed  CAS  Google Scholar 

  13. Shen HM, Yang CF, Ong CN (1999) Sodium selenite-induced oxidative stress and apoptosis in human hepatoma HepG2 cells. Int J Cancer 81:820–828

    Article  PubMed  CAS  Google Scholar 

  14. Jung U, Zheng X, Yoon SO, Chung AS (2001) Se-methylselenocysteine induces apoptosis mediated by reactive oxygen species in HL-60 cells. Free Radic Biol Med 31:479–489

    Article  PubMed  CAS  Google Scholar 

  15. Kim TS, Yun BY, Kim IY (2003) Induction of the mitochondrial permeability transition by selenium compounds mediated by oxidation of the protein thiol groups and generation of the superoxide. Biochem Pharmacol 66:2301–2311

    Article  PubMed  CAS  Google Scholar 

  16. Drake EN (2006) Cancer chemoprevention: selenium as a prooxidant, not an antioxidant. Med Hypotheses 67:318–322

    Article  PubMed  CAS  Google Scholar 

  17. Zhong W, Oberley TD (2001) Redox-mediated effects of selenium on apoptosis and cell cycle in the LNCaP human prostate cancer cell line. Cancer Res 61:7071–7078

    PubMed  CAS  Google Scholar 

  18. Zhong W, Yan T, Webber MM, Oberley TD (2004) Alteration of cellular phenotype and responses to oxidative stress by manganese superoxide dismutase and a superoxide dismutase mimic in RWPE-2 human prostate adenocarcinoma cells. Antioxid Redox Signal 6:513–522

    Article  PubMed  CAS  Google Scholar 

  19. Zhao R, Xiang N, Domann FE, Zhong W (2006) Expression of p53 enhances selenite-induced superoxide radical production and apoptosis in human prostate cancer cells. Cancer Res 66:2296–2304

    Article  PubMed  CAS  Google Scholar 

  20. Zhao R, Domann FE, Zhong W (2006) Apoptosis induced by selenomethionine and methioninase is superoxide mediated and p53 dependent in human prostate cancer cells. Mol Cancer Ther 5:3275–3284

    Article  PubMed  CAS  Google Scholar 

  21. Nelson MA, Goulet AC, Jacobs ET, Lance P (2005) Studies into the anticancer effects of selenomethionine against human colon cancer. Ann N Y Acad Sci 1059:26–32

    Article  PubMed  CAS  Google Scholar 

  22. Wei Y, Cao X, Qu Y, Lu J, Xing C, Zheng R (2001) SeO(2) induces apoptosis with down-regulation of Bcl-2 and up-regulation of p53 expression in both immortal human hepatic cell line and hepatoma cell line. Mutat Res 490:113–121

    PubMed  CAS  Google Scholar 

  23. Li J, Zuo L, Shen T, Xu CM, Zhang ZN (2003) Induction of apoptosis by sodium selenite in human acute promyelocytic leukemia NB4 cells: involvement of oxidative stress and mitochondria. J Trace Elem Med Biol 17:19–26

    Article  PubMed  CAS  Google Scholar 

  24. Last K, Maharaj L, Perry J, Strauss S, Fitzgibbon J, Lister TA, Joel S (2006) The activity of methylated and non-methylated selenium species in lymphoma cell lines and primary tumours. Ann Oncol 17:773–779

    Article  PubMed  CAS  Google Scholar 

  25. Hu H, Jiang C, Schuster T, Li GX, Daniel PT, Lü J (2006) Inorganic selenium sensitizes prostate cancer cells to TRAIL-induced apoptosis through superoxide/p53/Bax-mediated activation of mitochondrial pathway. Mol Cancer Ther 5:1873–1882

    Article  PubMed  CAS  Google Scholar 

  26. Li GX, Hu H, Jiang C, Schuster T, Lu J (2007) Differential involvement of reactive oxygen species in apoptosis induced by two classes of selenium compounds in human prostate cancer cells. Int J Cancer 120:2034–2043

    Article  PubMed  CAS  Google Scholar 

  27. Zwacka RM, Dudus L, Epperly MW, Greenberger JS, Engelhardt JF (1998) Redox gene therapy protects human IB-3 lung epithelial cells against ionizing radiation-induced apoptosis. Hum Gene Ther 9:1381–1386

    Article  PubMed  CAS  Google Scholar 

  28. Brown MR, Miller FJ Jr, Li WG, Ellingson AN, Mozena JD, Chatterjee P, Engelhardt JF, Zwacka RM, Oberley LW, Fang X, Spector AA, Weintraub NL (1999) Overexpression of human catalase inhibits proliferation and promotes apoptosis in vascular smooth muscle cells. Circ Res 85:524–533

    PubMed  CAS  Google Scholar 

  29. Li Q, Sanlioglu S, Li S, Ritchie T, Oberley LW, Engelhardt JF (2001) GPx-1 gene delivery modulates NFkappaB activation following diverse environmental injuries through a specific subunit of the IKK complex. Antioxid Redox Signal 3:415–432

    Article  PubMed  CAS  Google Scholar 

  30. Yan T, Li S, Oberley LW, Jiang X (1999) Altered levels of primary antioxidant enzymes in progeria skin fibroblasts. Biochem Biophys Res Commun 257:163–167

    Article  PubMed  CAS  Google Scholar 

  31. Li Y, Zhu H, Kuppusamy P, Roubaud V, Zweier JL, Trush MA (1998) Validation of lucigenin (bis-N-methylacridinium) as a chemilumigenic probe for detecting superoxide anion radical production by enzymatic and cellular systems. J Biol Chem 273:2015–2023

    Article  PubMed  CAS  Google Scholar 

  32. Zhao H, Kalivendi S, Zhang H, Joseph J, Nithipatikom K, Vasquez-Vivar J, Kalyanaraman B (2003) Superoxide reacts with hydroethidine but forms a fluorescent product that is distinctly different from ethidium: potential implications in intracellular fluorescence detection of superoxide. Free Radic Biol Med 34:1359–1368

    Article  PubMed  CAS  Google Scholar 

  33. Spallholz JE, Palace VP, Reid TW (2004) Methioninase and selenomethionine but not Se-methylselenocysteine generate methylselenol and superoxide in an in vitro chemiluminescent assay: implications for the nutritional carcinostatic activity of selenoamino acids. Biochem Pharmacol 67:547–554

    Article  PubMed  CAS  Google Scholar 

  34. Chaudiere J, Courtin O, Leclaire J (1992) Glutathione oxidase activity of selenocystamine: a mechanistic study. Arch Biochem Biophys 296:328–336

    Article  PubMed  CAS  Google Scholar 

  35. Oberley LW, Beuttner GR (1979) Role of superoxide dismutase in cancer: a review. Cancer Res 39:1141–1149

    PubMed  CAS  Google Scholar 

  36. Husbeck B, Nonn L, Peehl DM, Knox SJ (2006) Tumor-selective killing by selenite in patient-matched pairs of normal and malignant prostate cells. Prostate 66:218–225

    Article  PubMed  CAS  Google Scholar 

  37. Menter DG, Sabichi AL, Lippman SM (2000) Selenium effects on prostate cell growth. Cancer Epidemiol Biomarker Prev 9:1171–1182

    CAS  Google Scholar 

  38. Husbeck B, Peehl DM, Knox SJ (2005) Redox modulation of human prostate carcinoma cells by selenite increases radiation-induced cell killing. Free Radic Biol Med 38:50–57

    Article  PubMed  CAS  Google Scholar 

  39. Shin SH, Yoon MJ, Kim M, Kim JI, Lee SJ, Lee YS, Bae S (2007) Enhanced lung cancer cell killing by the combination of selenium and ionizing radiation. Oncol Rep 17:209–216

    PubMed  CAS  Google Scholar 

  40. Cai J, Jones DP (1998) Superoxide in apoptosis. Mitochondrial generation triggered cytochrome c loss. J Biol Chem 273:11401–11404

    Article  PubMed  CAS  Google Scholar 

  41. Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309–1312

    Article  PubMed  CAS  Google Scholar 

  42. Shen HM, Yang CF, Ding WX, Liu J, Ong CN (2001) Superoxide radical-induced apoptotic signaling pathway in selenite-treated HEPG2 cells: mitochondria serve as the main target. Free Radic Biol Med 30:9–21

    Article  PubMed  CAS  Google Scholar 

  43. Wu Y, Zhang H, Dong Y, Park YM, Ip C (2005) Endoplasmic reticulum stress signal mediators are targets of selenium action. Cancer Res 65-9073–9079

    Google Scholar 

  44. Kim EH, Sohn S, Kwon HJ, Kim SU, Kim MJ, Lee SJ, Choi KS (2007) Sodium selenite induces superoxide-mediated mitochondrial damage and subsequent autophagic cell death in malignant glioma cells. Cancer Res 67:6314–6324

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Jeanne Bourdeau-Heller for her technical assistance. This work was funded, in part, by grants from the National Cancer Institute (CA114281) and the Office of Research and Development, Biomedical Laboratory Research and Development Service, Department of Veterans Affairs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weixiong Zhong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiang, N., Zhao, R. & Zhong, W. Sodium selenite induces apoptosis by generation of superoxide via the mitochondrial-dependent pathway in human prostate cancer cells. Cancer Chemother Pharmacol 63, 351–362 (2009). https://doi.org/10.1007/s00280-008-0745-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-008-0745-3

Keywords

Navigation