Skip to main content
Log in

Analysis of Fluorine in Drinking Water by ICP-QMS/QMS with an Octupole Reaction Cell

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

The analysis of fluorine was carried out by measuring BaF+ ions with an inductively coupled plasma tandem quadrupole mass spectrometer (ICP-QMS/QMS). After optimization, a radio frequency power of 1300 W was found to benefit for the production of BaF+ ions while suppressing the production of BaOH3+ ions. After optimization of the reaction cell gas, it was found that the best performance for measuring BaF+ could be achieved at a flow rate of O2 in the range from 0.65 to 0.75 mL min−1. The signal intensity of BaF+ depended linearly on the concentration of Ba when it was not higher than 100 mg kg−1. The co-existence of metallic cations, such as Na in the sample, might suppress the generation of BaF+ ions in the plasma, while anions might not cause such a kind of interferences. The background equivalent concentration (BEC) and the lower detection limit (LDL) of fluorine were 0.4 and 0.06 mg kg−1, respectively, by adjusting the samples to a 10 mg kg−1 Ba matrix. The concentration of fluorine in a certified reference material (ERM-CA015a) was determined with the present method, for which the observed value was (1.36 ± 0.05)mg kg−1, which agreed with the certified value (1.3 ± 0.1)mg kg−1, where both values were shown as (mean value ± expanded uncertainty) with a coverage factor of (k = 2) for calculating the expanded uncertainty giving a level of confidence of approximately 95%. The present method was applied to the analysis of a tap water sample collected in the laboratory, for which the results of recovery tests gave a recovery around 100% with good reproducibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Fawell, K. Bailey, J. Chilton, E. Dahi, L. Fewtrell, and Y. Magara, “Fluoride in Drinking-water”, 2006, World Health Organization (WHO), Geneva, Switzerland.

    Google Scholar 

  2. E. Fujimori, Bunseki, 2017, 506, 48.

    Google Scholar 

  3. J. E. Fulford and E. S. K. Quan, Appl. Spectrosc., 1988, 42, 425.

    Article  CAS  Google Scholar 

  4. Y. Okamoto, J. Anal. At. Spectrom., 2001, 16, 539.

    Article  CAS  Google Scholar 

  5. X.-D. Bu, T.-B. Wang, and G. Hall, J. Anal. At. Spectrom., 2003, 18, 1443.

    Article  CAS  Google Scholar 

  6. H. Hayashi, Y. Hara, T. Tanaka, and M. Hiraide, Bunseki Kagaku, 2003, 52, 275.

    Article  CAS  Google Scholar 

  7. R. S. Houk, Anal. Chem., 1986, 58, 97A.

    Article  CAS  Google Scholar 

  8. M. M. Bayorn, A. R. Garcia, J. I. G. Alonso, and A. Sanz-Medel, Analyst, 1999, 124, 27.

    Article  Google Scholar 

  9. S. Mores, G. C. Monteiro, F. S. da Santos, E. Carasek, and B. Welz, Talanta, 2011, 85, 2681.

    Article  CAS  PubMed  Google Scholar 

  10. L. Balcaen, E. Bolea-Fernadez, M. Resano, and F. Vanhaecke, Anal. Chim. Acta, 2015, 894, 7.

    Article  CAS  PubMed  Google Scholar 

  11. N. Yamada, “Feasibility Study of Fluorine Detection by ICP-QQQ”, Agilent 8800 ICP-QQQ Application Handbook, 2nd ed., 2015, Agilent Technologies, 38.

    Google Scholar 

  12. N. L. A. Jamari, J. F. Dohmann, A. Raab, E. M. Krupp, and J. Feldmann, J. Anal. At. Spectrom., 2017, 32, 942.

    Article  CAS  Google Scholar 

  13. W. Guo, L. Jin, S. Hu, and Q. Guo, J. Agric. Food Chem., 2017, 65, 3406.

    Article  CAS  PubMed  Google Scholar 

  14. J. E. Fulford and E. S. K. Quan, Appl. Spectrosc., 1988, 42, 425.

    Article  CAS  Google Scholar 

  15. N. Ishizaka and Y. Matsuki, Bull. Hot Springs Res. Inst. Kanagawa Pref. (in Japanese), 2000, 31, 99.

    Google Scholar 

  16. Y. Zhu, A. Hioki, and K. Chiba, Anal. Sci., 2013, 29, 1027.

    Article  CAS  PubMed  Google Scholar 

  17. Y. Zhu and K. Chiba, J. Anal. At. Spectrom., 2010, 27, 1000.

    Article  Google Scholar 

  18. M. Birka, C. A. Wehe, L. Telgmann, M. Sperling, and U. Karst, J. Chromatogr. A, 2013, 1308, 125.

    Article  CAS  PubMed  Google Scholar 

  19. Y. Zhu, M. Hoshino, H. Yamada, A. Itoh, and H. Haraguchi, Bull. Chem. Soc. Jpn., 2004, 77, 1835.

    Article  CAS  Google Scholar 

  20. S. Mito, M. Ohata, and N. Furuta, Bunseki Kagaku, 2003, 52, 575.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanbei Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Nakano, K. & Shikamori, Y. Analysis of Fluorine in Drinking Water by ICP-QMS/QMS with an Octupole Reaction Cell. ANAL. SCI. 33, 1279–1280 (2017). https://doi.org/10.2116/analsci.33.1279

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.33.1279

Keywords

Navigation