Skip to main content

Advertisement

Log in

The Ruthenium Complex cis-(Dichloro)Tetraammineruthenium(III) Chloride Presents Immune Stimulatory Activity on Human Peripheral Blood Mononuclear Cells

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Ruthenium compounds in general are well suited for medicinal applications. They have been investigated as immunosuppressants, nitric oxide scavengers, antimicrobial agents, and antimalarials. The aim of this study is to evaluate the immunomodulatory activity of cis-(dichloro)tetraammineruthenium(III) chloride (cis-[RuCl2(NH3)4]Cl) on human peripheral blood mononuclear cells (PBMC). The cytotoxic studies performed here revealed that the ruthenium(III) complex presents a cytotoxic activity towards normal human PBMC, only at very high concentration. Results also showed that cis-[RuCl2(NH3)4]Cl presents a dual role on PBMC stimulating proliferation and interleukin-2 (IL-2) production at low concentration and inducing cytotoxicity, inability to proliferate, and inhibiting IL-2 production at high concentration. The noncytotoxic activity of cis-[RuCl2(NH3)4]Cl at low concentration towards PBMC, which correlates with the small number of annexin V positive cells and also the absence of DNA fragmentation, suggest that this compound does not induce apoptosis on PBMC. For the first time, we show that, at low concentration (10–100 µg L−1), the cis-[RuCl2(NH3)4]Cl compound induces peripheral blood lymphocytes proliferation and also stimulates them to IL-2 production. These results open a new potential applicability of ruthenium(III) complexes as a possible immune regulatory compound acting as immune suppressor at high concentration and as immune stimulator at low concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

cis-[RuCl2(NH3)4]Cl:

cis-(dichloro)tetraammineruthenium(III) chloride

DMSO:

dimethyl sulfoxide

EDTA:

ethylenediaminetetraacetic acid

ELISA:

enzyme-linked immunosorbent assay

FACS:

fluorescence-activated cell sorter

FITC:

fluorescein isothiocyanate

HEPES:

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid

IC50 :

50% inhibitory concentration

IL-2:

interleukin-2

Jurkat:

human T cell leukemia cell line

LPS:

(bacterial) lipopolysaccharide

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

NAMI-A:

imidazolium-trans-DMSO-imidazole-tetrachlororuthenate

PBMCs:

peripheral blood mononuclear cells

PHA:

phytohemagglutinin

PI:

propidium iodide

RPMI:

Roswell Park Memorial Institute medium

References

  1. Bruijnincx PC, Sadler PJ (2008) New trends for metal complexes with anticancer activity. Curr Opin Chem Biol 12(2):197–206

    Article  CAS  PubMed  Google Scholar 

  2. Clarke MJ (2003) Ruthenium metallopharmaceuticals. Coord Chem Rev 236:209–233

    Article  CAS  Google Scholar 

  3. Pizarro AM, Sadler PJ (2009) Unusual DNA binding modes for metal anticancer complexes. Biochimie. doi:10.1016/j.biochi.2009.03.017

  4. Chen H, Parkinson JA, Parsons S, Coxall RA, Gould RO, Sadler PJ (2002) Organometallic ruthenium(II) diamine anticancer complexes: arene-nucleobase stacking and stereospecific hydrogen-bonding in guanine adducts. J Am Chem Soc 124(12):3064–3082

    Article  CAS  PubMed  Google Scholar 

  5. Yan YK, Melchart M, Habtemariam A, Sadler PJ (2005) Organometallic chemistry, biology and medicine: ruthenium arene anticancer complexes. Chem Commun (38):4764–4776

  6. Dougan SJ, Habtemariam A, McHale SE, Parsons S, Sadler PJ (2008) Catalytic organometallic anticancer complexes. Proc Natl Acad Sci U S A 105:11628–11633

    Article  CAS  PubMed  Google Scholar 

  7. Halpern J (2001) Organometallic chemistry at the threshold of a new millennium. Retrospect and prospect. Pure Appl Chem 73:209

    Article  CAS  Google Scholar 

  8. Fish RH, Jaouen G (2003) Bioorganometallic chemistry: structural diversity of organometallic complexes with bioligands and molecular recognition studies of several supramolecular hosts with biomolecules, alkali-metal ions, and organometallic pharmaceuticals. Organometallics 22:2166–2177

    Article  CAS  Google Scholar 

  9. Allardyce CS, Dorcier A, Scolaro C, Dyson PJ (2005) Development of organometallic (organo-transition metal) pharmaceuticals. Appl Organomet Chem 19(1):1–10

    Article  CAS  Google Scholar 

  10. Dwyer DS, Gordon K, Jones B (1995) Ruthenium red potently inhibits immune responses both in vitro and in vivo. Int J Immunopharmacol 17:931–940

    Article  CAS  PubMed  Google Scholar 

  11. Clarke MJ, Bailey VM, Doan PE, Hiller CD, LaChance-Galang KJ, Daghlian H, Mandal S, Bastos CM, Lang D (1996) 1H NMR, EPR, UV–Vis, and electrochemical studies of imidazole complexes of Ru(III). Crystal structures of cis-[(Im)2(NH3)4RuIII]Br3 and [(1MeIm)6RuII]Cl2·2H2O. Inorg Chem 35:4896–4903

    Article  CAS  PubMed  Google Scholar 

  12. Hayton TW, Legzdins P, Sharp WB (2002) Coordination and organometallic chemistry of metal–NO complexes. Chem Rev 102(4):935–991

    Article  CAS  PubMed  Google Scholar 

  13. Allardyce CS, Dyson PJ, Ellis DJ, Salter PA, Scopelliti R (2003) Synthesis and characterisation of some water soluble ruthenium(II)-arene complexes and an investigation of their antibiotic and antiviral properties. J Organomet Chem 668(1–2):35–42

    Article  CAS  Google Scholar 

  14. Menezes CSR, Costa LCGP, de MR Ávila V, Ferreira MJ, Vieira CU, Pavanin LA, Homsi-Brandeburgo MI, Hamaguchi A, Silveira-Lacerda EP (2007) Analysis in vivo of antitumor activity, cytotoxicity and interaction between plasmid DNA and the cis-dichlorotetraammineruthenium(III) chloride. Chem–Biol Interact 167:116–124

    Article  CAS  PubMed  Google Scholar 

  15. Sanchez-Delgado RA, Anzelloti A (2004) Metal complexes as chemotherapeutic agents against tropical diseases: trypanosomiasis, malaria and leishmaniasis. Mini Rev Med Chem 4(1):23–30

    Article  CAS  PubMed  Google Scholar 

  16. Vashisht Gopal YN, Kondapi AK (2001) Topoisomerase II poisoning by indazole and imidazole complexes of ruthenium. J Biosci 26:271–276

    Article  CAS  PubMed  Google Scholar 

  17. Kapitza S, Jakupec MA, Uhl M, Keppler BK, Marian B (2005) The heterocyclic ruthenium(III) complex KP1019 (FFC14A) causes DNA damage and oxidative stress in colorectal tumor cells. Cancer Lett 226:115–121

    Article  CAS  PubMed  Google Scholar 

  18. Kapitza S, Pongratz M, Jakupec MA, Heffeter P, Berger W, Lackinger L, Keppler BK, Marian B (2005) Heterocyclic complexes of ruthenium(III) induce apoptosis in colorectal carcinoma cells. J Cancer Res Clin Oncol 131:101–110

    Article  CAS  PubMed  Google Scholar 

  19. Wang F, Bella J, Parkinson JA, Sadler PJ (2005) Competitive reactions of a ruthenium arene anticancer complex with histidine, cytochrome c and an oligonucleotide. J Biol Inorg Chem 10:147–155

    Article  CAS  PubMed  Google Scholar 

  20. Sava G, Bergamo A (1999) Drug control of solid tumour metastases: a critical view. Anticancer Res 19:1117–1124

    CAS  PubMed  Google Scholar 

  21. Sava G, Capozzi I, Bergamo A, Gagliardi R, Cocchietto M, Masiero L, Onisto M, Alessio E, Mestroni G, Garbisa S (1996) Down-regulation of tumour gelatinase/inhibitor balance and preservation of tumour endothelium by an anti-metastatic ruthenium complex. Int J Cancer 68:60–66

    Article  CAS  PubMed  Google Scholar 

  22. Pacor S, Zorzet S, Cocchietto M, Bacac M, Vadori M, Turrin C, Gava B, Castellarin A, Sava G (2004) Intratumoral NAMI-A treatment triggers metastasis reduction, which correlates to CD44 regulation and tumor infiltrating lymphocyte recruitment. J Pharmacol Exp Ther 310:737–744

    Article  CAS  PubMed  Google Scholar 

  23. Magnarin M, Bergamo A, Carotenuto ME, Zorzet S, Sava G (2000) Increase of tumour infiltrating lymphocytes in mice treated with antimetastatic doses of NAMI-A. Anticancer Res 20:2939–2944

    CAS  PubMed  Google Scholar 

  24. Pavanin LA, Giesbrecht E, Tfouni E (1985) Synthesis and properties of the ruthenium(II) complexes cis-Ru(NH3)4(isn)L2+. Spectra and reduction potentials. Inorg Chem 24(25):4444–4446

    Article  CAS  Google Scholar 

  25. Roberto PG, Kashima S, Marcussi S, Pereira JO, Astolfi-Filho S, Nomizo A, Giglio JR, Fontes MR, Soares AM, Franca SC (2004) Cloning and identification of a complete cDNA coding for a bactericidal and antitumoral acidic phospholipase A2 from Bothrops jararacussu venom. Protein J 23:273–285

    Article  CAS  PubMed  Google Scholar 

  26. Allardyce CS, Dyson PJ (2001) Ruthenium in medicine: current clinical uses and future prospects. Platin Met Rev 45:6–69

    Google Scholar 

  27. Cuin A, Massabni AC, Leite CQF, Sato DN, Neves A, Szpoganicz B, Silva MS, Bortoluzzi AJ (2007) Synthesis, X-ray structure and antimycobacterial activity of silver complexes with a-hydroxycarboxylic acids. J Inorg Biochem 101:291–296

    Article  CAS  PubMed  Google Scholar 

  28. Brabec V, Nováková O (2006) DNA binding mode of ruthenium complexes and relationship to tumor cell toxicity. Drug Resist Updat 9:111–122

    Article  CAS  PubMed  Google Scholar 

  29. Bastos CM, Gordon KA, Ocain TD (1998) Synthesis and immunosuppressive activity of ruthenium complexes. Bioorg Med Chem Lett 8:147–150

    Article  CAS  PubMed  Google Scholar 

  30. Newcomb JR, Rivnay B, Bastos CM, Ocain TD, Gordon K, Gregory P, Turci SM, Sterne KA, Jesson M, Krieger J, Jenson JC, Jones B (2003) In vitro immunomodulatory activity of ruthenium complexes. Inflamm Res 52:263–271

    CAS  PubMed  Google Scholar 

  31. Bacac M, Vadori M, Sava G, Pacor S (2004) Cocultures of metastatic and host immune cells: selective effects of NAMI-A for tumor cells. Cancer Immunol Immunother 53:1101–1110

    Article  CAS  PubMed  Google Scholar 

  32. Frasca DR, Gehrig LE, Clarke MJ (2001) Cellular effects of transferrin coordinated to. J Inorg Biochem 83:139–149

    Article  CAS  PubMed  Google Scholar 

  33. Sava G, Giraldi T, Mestroni G, Zassinovich G (1983) Antitumor effects of rhodium(I), iridium(I) and ruthenium(II) complexes in comparison with cis-dichlorodiammino platinum(II) in mice bearing Lewis lung carcinoma. Chem Biol Interact 45:1–6

    Article  CAS  PubMed  Google Scholar 

  34. Gagliardi R, Sava G, Pacor S, Mestroni G, Alessio E (1994) Antimetastatic action and toxicity on healthy tissues of Na[trans-RuCl4(DMSO)Im] in the mouse. Clin Exp Metastasis 12:93–100

    Article  CAS  PubMed  Google Scholar 

  35. Sava G, Pacor S, Bergamo A, Cocchietto M, Mestroni G, Alessio E (1995) Effects of ruthenium complexes on experimental tumors: irrelevance of cytotoxicity for metastasis inhibition. Chem Biol Interact 95:109–126

    Article  CAS  PubMed  Google Scholar 

  36. Benczik M, Gaffen SL (2004) The interleukin (IL)-2 family cytokines: survival and proliferation signaling pathways in T lymphocytes. Immunol Invest 33:109–142

    Article  CAS  PubMed  Google Scholar 

  37. Parmiani G, Rivoltini L, Andreola G, Carrabba M (2000) Cytokines in cancer therapy. Immunol Lett 74:41–44

    Article  CAS  PubMed  Google Scholar 

  38. Eklund JW, Kuzel TM (2004) A review of recent findings involving interleukin-2-based cancer therapy. Curr Opin Oncol 16:542–546

    Article  CAS  PubMed  Google Scholar 

  39. Anghileri LJ (1975) The in vivo inhibition of tumor growth by ruthenium red: its relationship with the metabolism of calcium in the tumor. Z Krebsforsch Klin Onkol Cancer Res Clin Oncol 83:213–217

    Article  CAS  PubMed  Google Scholar 

  40. Luft JH (1966) Fine structures of capillary and endocapillary layer as revealed by ruthenium red. Fed Proc 25:1773–1783

    CAS  PubMed  Google Scholar 

  41. Luft JH (1971) Ruthenium red and violet. II. Fine structural localization in animal tissues. Anat Rec 171:369–415

    Article  CAS  PubMed  Google Scholar 

  42. Moore CL (1971) Specific inhibition of mitochondrial Ca++ transport by ruthenium red. Biochem Biophys Res Commun 42:298–305

    Article  CAS  PubMed  Google Scholar 

  43. Lee HB, Xu L, Meissner G (1994) Reconstitution of the skeletal muscle ryanodine receptor-Ca2+ release channel protein complex into proteoliposomes. J Biol Chem 269:13305–13312

    CAS  PubMed  Google Scholar 

  44. Xu L, Tripathy A, Pasek DA, Meissner G (1999) Ruthenium red modifies the cardiac and skeletal muscle Ca(2+) release channels (ryanodine receptors) by multiple mechanisms. J Biol Chem 274:32680–32691

    Article  CAS  PubMed  Google Scholar 

  45. Hakamata Y, Nishimura S, Nakai J, Nakashima Y, Kita T, Imoto K (1994) Involvement of the brain type of ryanodine receptor in T-cell proliferation. FEBS Lett 352:206–210

    Article  CAS  PubMed  Google Scholar 

  46. Hosoi E, Nishizaki C, Gallagher KL, Wyre HW, Matsuo Y, Sei Y (2001) Expression of the ryanodine receptor isoforms in immune cells. J Immunol 167:4887–4894

    CAS  PubMed  Google Scholar 

  47. Landowski TH, Megli CJ, Nullmeyer KD, Lynch RM, Dorr RT (2005) Mitochondrial-mediated disregulation of Ca2+ is a critical determinant of Velcade (PS-341/bortezomib) cytotoxicity in myeloma cell lines. Cancer Res 65:3828–3836

    Article  CAS  PubMed  Google Scholar 

  48. Griffiths EJ (2000) Use of ruthenium red as an inhibitor of mitochondrial Ca(2+) uptake in single rat cardiomyocytes. FEBS Lett 486:257–260

    Article  CAS  PubMed  Google Scholar 

  49. Turley EA, Erickson CA, Tucker RP (1985) The retention and ultrastructural appearances of various extracellular matrix molecules incorporated into three-dimensional hydrated collagen lattices. Dev Biol 109:347–369

    Article  CAS  PubMed  Google Scholar 

  50. Flanagan BF, Dalchau R, Allen AK, Daar AS, Fabre JW (1989) Chemical composition and tissue distribution of the human CDw44 glycoprotein. Immunology 67:167–175

    CAS  PubMed  Google Scholar 

  51. Lesley J, Hyman R (1993) Kincade PW, CD44 and its interaction with extracellular matrix. Adv Immunol 54:271–335

    Article  CAS  PubMed  Google Scholar 

  52. Huet S, Groux H, Caillou B, Valentin H, Prieur AM, Bernard A (1989) CD44 contributes to T cell activation. J Immunol 143:798–801

    CAS  PubMed  Google Scholar 

  53. Ilangumaran S, Borisch B, Hoessli DC (1999) Signal transduction via CD44: role of plasma membrane microdomains. Leuk Lymphoma 35:455–469

    CAS  PubMed  Google Scholar 

  54. Seiter S, Schmidt DS, Zoller M (2000) The CD44 variant isoforms CD44v6 and CD44v7 are expressed by distinct leukocyte subpopulations and exert non-overlapping functional activities. Int Immunol 12:37–49

    Article  CAS  PubMed  Google Scholar 

  55. Marhaba R, Bourouba M, Zoller M (2005) CD44v6 promotes proliferation by persisting activation of MAP kinases. Cell Signal 17:961–973

    Article  CAS  PubMed  Google Scholar 

  56. Hohenegger M, Berg I, Weigl L, Mayr GW, Potter BV, Guse AH (1999) Pharmacological activation of the ryanodine receptor in Jurkat T-lymphocytes. Br J Pharmacol 128:1235–1240

    Article  CAS  PubMed  Google Scholar 

  57. Conrad DM, Hanniman EA, Watson CL, Mader JS, Hoskin DW (2004) Ryanodine receptor signaling is required for anti-CD3-induced T cell proliferation, interleukin-2 synthesis, and interleukin-2 receptor signaling. J Cell Biochem 92:387–399

    Article  CAS  PubMed  Google Scholar 

  58. Dammermann W, Guse AH (2005) Functional ryanodine receptor expression is required for NAADP-mediated local Ca2+ signaling in T-lymphocytes. J Biol Chem 280:21394–21399

    Article  CAS  PubMed  Google Scholar 

  59. Trynda-Lemiesz L (2004) Interaction of an anticancer ruthenium complex HInd[RuInd(2)Cl(4)] with cytochrome c. Acta Biochim Pol 51:199–205

    CAS  PubMed  Google Scholar 

  60. Bae JH, Park JW, Kwon T (2003) Ruthenium red, inhibitor of mitochondrial Ca2+ uniporter, inhibits curcumin-induced apoptosis via the prevention of intracellular Ca2+ depletion and cytochrome c release. Biochem Biophys Res Commun 303:1073–1079

    Article  CAS  PubMed  Google Scholar 

  61. Zettl UK, Mix E, Zielasek J, Stangel M, Hartung HP, Gold R (1997) Apoptosis of myelin-reactive T cells induced by reactive oxygen and nitrogen intermediates in vitro. Cell Immunol 178:1–8

    Article  CAS  PubMed  Google Scholar 

  62. Kim JA, Kang YS, Lee SH, Lee YS (2000) Inhibitors of Na+/Ca2+ exchanger prevent oxidant-induced intracellular Ca2+ increase and apoptosis in a human hepatoma cell line. Free Radic Res 33:267–277

    Article  CAS  PubMed  Google Scholar 

  63. Perl A, Nagy G, Gergely P, Puskas F, Qian Y, Banki K (2004) Apoptosis and mitochondrial dysfunction in lymphocytes of patients with systemic lupus erythematosus. Methods Mol Med 102:87–114

    CAS  PubMed  Google Scholar 

  64. Los M, Droge W, Stricker K, Baeuerle PA, Schulze-Osthoff K (1995) Hydrogen peroxide as a potent activator of T lymphocyte functions. Eur J Immunol 25:159–165

    Article  CAS  PubMed  Google Scholar 

  65. Hidalgo C, Bull R, Behrens MI, Donoso P (2004) Redox regulation of RyR-mediated Ca2+ release in muscle and neurons. Biol Res 37:539–552

    PubMed  Google Scholar 

  66. Marques da Silva Paula M, Pich CT, Petronilho F, Drei LB, Rudnicki M, Roberto de Oliveira M, Moreira JC, Henriques JA, Franco CV, Dal Pizzol F (2005) Antioxidant activity of new ruthenium compounds. Redox Rep 10:139–143

    Article  CAS  Google Scholar 

  67. Eimerl S, Schramm M (1995) Resuscitation of brain neurons in the presence of Ca2+ after toxic NMDA-receptor activity. J Neurochem 65:739–743

    Article  CAS  PubMed  Google Scholar 

  68. Pereira FC, Vilanova-Costa CAST, Lima AP, Ribeiro ASBB, da Silva HD, Pavanin LA, Silveira-Lacerda EP (2009) Cytotoxic and genotoxic effects of cis-tetraammine(oxalato)ruthenium(III) dithionate on the root meristem cells of Allium cepa. Biol Trace Elem Res 128(3):258–268

    Article  CAS  Google Scholar 

  69. Ribeiro ASBB, da Silva CC, Pereira FC, Lima AP, Vilanova-Costa CAST, Aguiar SS, Pavanin LA, da Cruz AD, Silveira-Lacerda EP (2009) Mutagenic and genotoxic effects of cis-(dichloro)tetraammineruthenium(III) chloride on human peripheral blood lymphocytes. Biol Trace Elem Res. doi:10.1007/s12011-009-8334-9

Download references

Acknowledgments

This work was supported the Research and Projects Financing (FINEP; grant no. 01.06.0941.00/CT-Saúde to Elisângela de Paula Silveira-Lacerda), the Foundation for the Support of Research in the State of São Paulo (FAPESP), and the Brazilian National Counsel of Technological and Scientific Development (CNPq) through fellowships to Cesar Augusto Sam Tiago Vilanova-Costa (grant no. 381303/2007-1) and Flávia de Castro Pereira (grant no. 381302/2007-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisângela de Paula Silveira-Lacerda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silveira-Lacerda, E.P., Vilanova-Costa, C.A.S.T., Pereira, F.C. et al. The Ruthenium Complex cis-(Dichloro)Tetraammineruthenium(III) Chloride Presents Immune Stimulatory Activity on Human Peripheral Blood Mononuclear Cells. Biol Trace Elem Res 133, 270–283 (2010). https://doi.org/10.1007/s12011-009-8440-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-009-8440-8

Keywords

Navigation