Skip to main content

Advertisement

Log in

Cocultures of metastatic and host immune cells: selective effects of NAMI-A for tumor cells

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

The effects of NAMI-A, [H2im][trans-RuCl4(dmso-S)(Him)], a new metal-based agent for treating tumor metastases, have been investigated in vitro on splenocytes, ConA- or LPS-activated T and B lymphoblasts, and thymocytes. Splenocytes and thymocytes exposed for 1 h to 0.01–0.1-mM NAMI-A do not change their mitochondrial functionality, cell cycle distribution, protein synthesis, and CD44 expression in comparison to untreated control samples. Instead, mitochondrial functionality increased 24 h after treatment in a fraction of splenocytes. The same treatment reduced mitochondrial functionality and S phase of the cell cycle in T and B blasts (already after 1 h treatment) and reduced CD44 expression on B blasts, 24 h after treatment. On cocultures of splenocytes and metastatic cells (metGM) (1:1), NAMI-A induces a selective depolarization of mitochondrial membrane potential of metGM cells, while it stimulates splenocytes (mainly lymphocytes), as shown by the increase of the S phase, nitric oxide production, and adhesion onto metastatic cells. This, in turn, reduces the number of metastatic cells and results in the increased ratio between splenocytes and metGM in favor of diploid cells (doubling from one to two). Rosetting of leukocytes onto metastatic cells correlates with induction of CD54 expression on tumor cells after NAMI-A in vivo treatment, which in turn, might contribute to metastasis recognition by cytotoxic lymphocytes. The overall antimetastatic activity displayed by NAMI-A might therefore be the result of complex interactions with tumor cells, on which it displays selective antitumor activity, and with host immune cells through which it promotes activation of host immune defenses involved in tumor suppression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2A–F
Fig. 3A–C
Fig. 4A–C
Fig. 5

Similar content being viewed by others

References

  1. Applegate KG, Balch CM, Pellis NR (1990) In vitro migration of lymphocytes through collagen matrix: arrested locomotion in tumor-infiltrating lymphocytes. Cancer Res 22:7153

    Google Scholar 

  2. Beltran B, Quintero M, Garcia-Zaragoza E, O’Connor E, Esplugues JV, Moncada S (2002) Inhibition of mitochondrial respiration by endogenous nitric oxide: a critical step in Fas signaling. PNAS 99:8892

    Article  CAS  PubMed  Google Scholar 

  3. Bourguignon LYW (2001) CD44-mediated oncogenic signalling and cytoskeleton activation during mammary tumor progression. J Mammary Gland Biol Neopl 6:287

    Article  CAS  Google Scholar 

  4. Bourguignon LYW, Zhu H, Shao L, Chen YW (2001) CD44 interaction with c-Src kinase promotes cortactin-mediated cytoskeleton function and hyaluronic acid (HA)-dependent ovarian tumor cell migration. J Biol Chem 276:7327

    Article  CAS  PubMed  Google Scholar 

  5. Cocchietto M, Sava G (2000) Blood concentration and toxicity of the antimetastasis agent NAMI-A following repeated intravenous treatment in mice. Pharmacol Toxicol 87:193

    Article  CAS  PubMed  Google Scholar 

  6. Cossarizza A, Baccarani Contri M, Kalashnikova G, Francheschi C (1993) A new method for cytofluorimetric analysis of mitochondrial membrane potential using J-aggregate forming lipohphilic cation 5, 5′,6, 6′-tetrachloro-1, 1′,3,3′- tetraethylbenzimidazol-carbocyanineiodide (JC-1). Biochem Biophys Res Commun 197:40

    Article  CAS  PubMed  Google Scholar 

  7. Cossarizza A, Ceccarelli D, Masini A (1996) Functional heterogeneity of an isolated mitochondrial population revealed by cytofluorimetric analysis at the single organelle level. Exp Cell Res 222:84

    Article  CAS  PubMed  Google Scholar 

  8. DeGrendele HC, Estess P, Siegelman MH (1997) Requirement for CD44 in activated T cell extravasation into an inflammatory site. Science 278:672

    Article  CAS  PubMed  Google Scholar 

  9. DHHS (1985) Guide for the care and use of laboratory animals. Department of Health and Human Services, National Institutes of Health, Bethesda, MD, p 23

  10. Foss FM (2002) Immunologic mechanisms of antitumor activity. Semin Oncol 29:5

    Article  CAS  Google Scholar 

  11. Goldberg EP, Hasdba AR, Almond BA, Marotta JS (2002) Intratumoral cancer chemotherapy and immunotherapy: opportunities for nonsystemic preperative drug delivery. J Pharm Pharmacol 54:159

    Article  CAS  PubMed  Google Scholar 

  12. Haynes BF, Telen MJ, Hale LP, Denning SM (1989) CD44—a molecule involved in leukocyte adherence and T-cell activation. Immunol Today 10:423

    Article  CAS  PubMed  Google Scholar 

  13. Hammond D, Nagarkatti PS, Gote L, Seth A, Hassuneh M, Nagarkatti M (1993) Double-negative T cells from MRL-lpr/lpr mice mediate cytolytic activity when triggered through adhesion molecules and constitutively express perforin gene. J Exp Med 178:2225

    Article  CAS  PubMed  Google Scholar 

  14. Liotta LA, Kohn EC (2001) The microenvironment of the tumor-host interface. Nature 411:375

    Article  CAS  PubMed  Google Scholar 

  15. Mackall CL (1999) T-cell immunodeficiency following cytotoxic antineoplastic therapy: a review. Oncologist 4:370

    CAS  PubMed  Google Scholar 

  16. Magnarin M, Bergamo A, Carotenuto ME, Zorzet S, Sava G (2000) Increase of tumor infiltrating lymphocytes in mice treated with antimetastatic doses of NAMI-A. Anticancer Res 20:2939

    CAS  PubMed  Google Scholar 

  17. Marlin SD, Springer TA (1987) Purified intercellular adhesion molecule (ICAM-1) is a ligand for lymphocyte function-associated antigen-1 (LFA-1). Cell 51:813

    Article  CAS  PubMed  Google Scholar 

  18. Noble PW, Lake LR, Henson PM, Riches DW (1993) Hyaluronate activation of CD44 induces insulin like growth factor 1 expression by a tumor necrosis factor-alpha-dependent mechanism in murine macrophages. J Clin Invest 91:2368

    CAS  PubMed  Google Scholar 

  19. Novak AK, Bruce W, Robinson S, Lake RA (2002) Gemcitabine exerts a selective effect on the humoral immune response implications for combination chemo-immunotherapy. Cancer Res 62:2353

    PubMed  Google Scholar 

  20. Pacor S, Vadori M, Vita F, Bacac M, Soranzo MR, Zabucchi G, Sava G (2001) Isolation of a murine metastatic cell line and preliminary test of sensitivity to the anti-metastasis agent NAMI-A. Anticancer Res 21:2523

    CAS  PubMed  Google Scholar 

  21. Pacor S, Cocchietto M, Zorzet S, Bacac M, Vadori M, Castellarin A, Turrin C, Sava G (2004) Intra-tumoral NAMI-A treatment triggers metastasis reduction, which correlates to CD44 regulation and TIL recruitment. J PET (in press)

  22. Pintus G, Tadolini B, Posadino AM, Sanna B, Debidda M, Bennardini F, Sava G, Ventura C (2002) Inhibition of the MEK/ERK signaling pathway by the novel antimetastatic agent NAMI-A down-regulates c-myc gene expression and endothelial cell proliferation. Eur J Biochem 269:5861

    Article  CAS  PubMed  Google Scholar 

  23. Poliak-Blazi M, Boranic M, Marzan B, Radacic M (1986) A transplantable aplastic mammary carcinoma of CBA mice. Vet Arh 51:99

    Google Scholar 

  24. Rafi A, Nagarkatti M, Nagarkatti PS (1997) CD44-hyaluronic acid interactions in B lymphocyte cell activation. Blood 89:2901

    CAS  PubMed  Google Scholar 

  25. Reimann T, Buscher D, Hipskind RA, Krautwald S, Lohmann-Matthes ML, Baccarini M (1994) Lipopolysaccharide induces activation of the Raf-1/MAP kinase pathway: a putative role for Raf-1 in the induction of the IL-1 beta and the TNF-alpha genes. J Immunol 153:5740

    CAS  PubMed  Google Scholar 

  26. Sava G, Bergamo A (2000) Ruthenium-based compounds and tumor growth control. Int J Oncol 17:353

    CAS  PubMed  Google Scholar 

  27. Sava G, Capozzi I, Clerici K, Gagliardi R, Alessio E, Mestroni G (1998) Pharmacological control of lung metastases of solid tumors by a novel ruthenium complex. Clin Exp Met 16:371

    Article  CAS  Google Scholar 

  28. Sava G, Zorzet S, Turrin C, Vita F, Soranzo M, Zabucchi G, Cocchietto M, Bergamo A, DiGiovine S, Pezzoni G, Sartor L, Garbisa S (2003) Dual action of NAMI-A in inhibition of solid tumor metastasis: selective targeting of metastatic cells and binding to collagen. Clin Cancer Res 9:1898

    CAS  PubMed  Google Scholar 

  29. Sconocchia G, Campagnano L, Adorno D, Iacona A, Cococcetta NY, Boffo V, Amadori S, Casciani CU (2001) CD44 ligation on peripheral blood polymorphonuclear cells induces interleukin-6 production. Blood 97:3621

    Article  CAS  PubMed  Google Scholar 

  30. Stahnke K, Fulda S, Friesen C, Straub G, Debatin KM (2001) Activation of apoptosis pathways in peripheral blood lymphocytes by in vivo chemotherapy. Blood 98:3066

    Article  CAS  PubMed  Google Scholar 

  31. Stamenkovic I (2000) Matrix metalloproteinases in tumor invasion and metastasis. Semin Cancer Biol 10:415

    Article  CAS  Google Scholar 

  32. Stuehr DJ, Nathan CF (1989) Nitric oxide. A macrophage product responsible for cytostasis and respiratory inhibition in tumor target cells. J Exp Med 169:1543

    Article  CAS  PubMed  Google Scholar 

  33. Teshigawara K, Okubo Y, Sugie K, Uchida A (1994) The regulation of NK cell activity through LFA-1 and p58. Clin Immunol Immunopathol 26:629

    Google Scholar 

Download references

Acknowledgements

This work was supported by MIUR (prot. 2001053898_004, Pharmacological mechanisms of the antimetastatic activity of metal-based drugs). Fondazione Callerio Onlus is kindly acknowledged for the financial support of the Ph.D. fellowship of M. Bacac and for making the flow cytometry facility available.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabrina Pacor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bacac, M., Vadori, M., Sava, G. et al. Cocultures of metastatic and host immune cells: selective effects of NAMI-A for tumor cells. Cancer Immunol Immunother 53, 1101–1110 (2004). https://doi.org/10.1007/s00262-004-0566-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-004-0566-0

Keywords

Navigation