Skip to main content
Log in

Effects of Nanoanatase on the Photosynthetic Improvement of Chloroplast Damaged by Linolenic Acid

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

To further evaluate the photosynthetic effects of nanoanatase, the improvement of spinach chloroplast photosynthesis damaged by linolenic acid was investigated in the present paper. Several results showed that after the addition of nanoanatase to the linolenic acid-treated chloroplast, the light absorption increased by linolenic acid could be decreased, but the excitation energy distribution from photosystem (PS) I to PS II was promoted, and the decrease of PS II fluorescence yield caused by linolenic acid was reduced and the inhibition of oxygen evolution caused by linolenic acid of several concentrations was decreased. It was considered that nanoanatase could combine with linolenic acid and decrease the damage of linolenic acid on the structure and function of chloroplast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chen WS, Nathanson B, White JE, Brody M (1969) Fatty acid as model system for the action of Ricinus leaf extract on higher plant chloroplasts and algae. Arch Biochem Biophys 135:21–27

    Article  Google Scholar 

  2. Cole RM, Macpeek WA, Cohen WS (1980) Divalent cations and restoration of electron transport activity in fatty acid-treated chloroplasts. Plant Sci Lett 17:345–352

    Article  CAS  Google Scholar 

  3. Okamoto T, Katoh S (1977) Linolenic acid binding by chloroplasts. Plant Cell Physiol 18:539–550

    CAS  Google Scholar 

  4. Siegenthaler PA (1974) Inhibition of photosystem II electron transport in chloroplasts by fatty acids and restoration of its activity by Mn2+. FEBS Lett 39:337–340

    Article  PubMed  CAS  Google Scholar 

  5. Zhang QD, Tang CQ, Li SY, Lin SQ, Lou SQ, Kuang TY (1982) Structure and function of chloroplast membrane XI. The effects of linolenic acid on the structure and the absorption and fluorescence spectra of wheat chloroplast membranes as well as regulations by MgCl2. Acta Bot Sin 24(4):326–332 (in Chinese)

    CAS  Google Scholar 

  6. Lin SQ, Zhang QD, Lou SQ, Hao QB, Li TZ, Tang CQ, Kuang TY (1980) Structure and function of chloroplast membrane VI. effect of Mg2+ n the light energy transformation and relative quantum yield of chloroplast membrane. J Plant Physiol 6:353–359 (in Chinese)

    Google Scholar 

  7. Crabtree RH (1998) A new type of hydrogen bond. Science 282:2000–2001

    Article  CAS  Google Scholar 

  8. Zheng L, Hong FS, Lv SP, Liu C (2005) Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res 104(1):82–93

    Article  Google Scholar 

  9. Hong FS, Yang P, Gao FQ, Liu C, Zheng L, Yang F, Zhou J (2005) Effect of nano-TiO2 on spectral characterization of photosystem II particles from spinach. Chem Res Chin Univ 21(2):196–200

    CAS  Google Scholar 

  10. Hong FS, Zhou J, Liu C, Yang F, Wu C, Zheng L, Yang P (2005) Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach. Biol Trace Elem Res 105(3):269–280

    Article  PubMed  CAS  Google Scholar 

  11. Hong FS, Yang F, Ma ZN, Zhou J, Liu C, Wu C, Yang P (2005) Influences of nano-TiO2 on the chloroplast ageing of spinach under light. Biol Trace Elem Res 104(3):249–260

    Article  PubMed  CAS  Google Scholar 

  12. Yang F, Hong FS, You WJ, Liu C, Gao FQ, Wu C, Yang P (2006) Influences of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biol Trace Elem Res 110(2):179–190

    Article  PubMed  CAS  Google Scholar 

  13. Gao FQ, Hong FS, Liu C, Zheng L, Su MY, Wu X, Yang F, Wu C, Yang P (2006) Mechanism of nano-anatase TiO2 on promoting photosynthetic carbon reaction of spinach: inducing complex of Rubisco–Rubisco activase. Biol Trace Elem Res 111(1–3):239–253

    Article  PubMed  CAS  Google Scholar 

  14. Su MY, Wu X, Liu C, Qu CX, Liu XQ, Chen L, Huang H, Hong FS (2007) Effects of nano-anatase TiO2 on absorption, distribution of light and photochemical activities of chloroplast of spinach. Biol Trace Elem Res 118(2):120–130

    Article  CAS  Google Scholar 

  15. Zheng L, Su MY, Liu C, Chen L, Huang H, Wu X, Liu XQ, Yang F, Gao FQ, Hong FS (2007) Effects of nano-anatase TiO2 on chloroplast photochemistry reaction of spinach under different light illumination. Biol Trace Elem Res 119(1):68–76

    Article  CAS  Google Scholar 

  16. Yang F, Liu C, Gao FQ, Su MY, Wu X, Zheng L, Hong FS, Yang P (2007) The improvement of spinach growth by nano-anatase TiO2 treatment is related to nitrogen photoreduction. Biol Trace Elem Res 119(1):77–88

    Article  PubMed  CAS  Google Scholar 

  17. Su MY, Wu X, Liu C, Qu CX, Liu XQ, Chen L, Huang H, Hong FS (2007) Promotion of energy transfer and oxygen evolution in spinach photosystem II by nano-anatase TiO2. Biol Trace Elem Res 119(2):183–192

    Article  CAS  Google Scholar 

  18. Zheng L, Su MY, Wu X, Liu C, Qu CX, Chen L, Huang H, Liu XQ, Hong FS (2007) Effects of nano-anatase-TiO2 on spectral characteristics and distribution of LHC II on the thylakoid membranes of spinach. Biol Trace Elem Res 120(1–3):273–283

    CAS  Google Scholar 

  19. Gao FQ, Liu C, Qu CX, Zheng L, Yang F, Su MY, Hong FS (2008) Was improvement of spinach growth by nano-TiO2 treatment related to the changes of Rubisco activase? BioMetals 21:211–217

    Article  PubMed  CAS  Google Scholar 

  20. Zheng L, Su MY, Wu X, Liu C, Qu CX, Chen L, Huang H, Liu XQ, Hong FS (2008) Antioxidant stress promoted by nano-anatase in spinach chloroplasts under UV-B radiation. Biol Trace Elem Res 121:69–79. DOI 10.1007/s12011-007-8028-0

    Article  CAS  Google Scholar 

  21. Ma LL, Liu C, Qu CX, Yin ST, Liu J, Gao FQ, Hong FS (2008) Rubisco activase mRNA expression in spinach: modulation by nano-anatase treatment. Biol Trace Elem Res 122(2):168–178

    Article  CAS  Google Scholar 

  22. Su MY, Liu C, Qu CX, Zheng L, Chen L, Huang H, Liu XQ, Wu X, Hong FS (2007) Nano-anatase relieves the inhibition of electron transport caused by linolenic acid in chloroplasts of spinach. Biol Trace Elem Res 122:73–81. DOI 10.1007/s12011-007-8055-x

    Google Scholar 

  23. Yang P, Lu C, Hua N, Du Y (2002) Titanium dioxide nanoparticles co-doped with Fe3+ nd Eu3+ ons for photocatalysis. Mater Lett 57:794–801

    Article  CAS  Google Scholar 

  24. Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  PubMed  CAS  Google Scholar 

  25. Lavorel J, Etienne AL (1977) In vivo chlorophyll fluorescence. In: Barber J (ed) Primary processes of photosynthesis. Elsevier, Amsterdam, pp 206–263

    Google Scholar 

  26. Murata N (1969) Control of excitation transfer in photosynthesis II. Magnesium ion-dependent distributon of excitation energy between two pigment systems in spinach chloroplasts. Biochim Biophys Acta 189:171–181

    Article  PubMed  CAS  Google Scholar 

  27. Murata N, Tashiro H, Takamiya A (1970) Effects of divalent metal ions on chlorophyll a fluorescence in isolated spinach chloroplasts. Biochim Biophys Acta 197:250–256

    Article  PubMed  CAS  Google Scholar 

  28. Chow WS, Thorne SW, Duniec JT, Sculley MJ, Boardman NK (1980) The stacking of chloroplast thylakoids. Effects of cation screening and binding, studied by the digitonin method. Arch Biochem Biophys 201:347–355

    Article  PubMed  CAS  Google Scholar 

  29. Kuang TY (2003) Mechanism and regulation of primary energy conversion process in photosynthesis. Science and Technology Press of Jiangsu, Nanjing, pp 22–68 (in Chinese)

    Google Scholar 

  30. Li M, Wang ZL, Shi HZ, Zeng Y (2003) Surface morphology, spectra and photocatalytic bactericidal effect of chlorophyll-sensitizing TiO2 crystalline phases. Journal of Inorganic Materials 18(6):1261–1266 (in Chinese)

    CAS  Google Scholar 

  31. Campbell WM, Burrel AK, Officer DL et al (2004) Porphyrins as light harvesters in the dye-sensitised TiO2 solar cell. Coord Chem Rev 248:817–833

    Article  CAS  Google Scholar 

  32. Kuang TY, Zuo PY, Chang CT, Lou SJ, Li TS, Hao HP, Lin SC (1980) Structure and function of chloroplast membranes. Effects of potassium and magnesium ions on the structure and the absorption spectrum of two kinds of chloroplast membranes. Photobiochem Photophys 1:73–82

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant nos. 20671067 and 30470150), the Jiangsu Province Universities Natural Science Foundation (grant no. 06KJB180094), and the Medical Development Foundation of Suzhou University (EE120701).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fashui Hong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, M., Liu, J., Yin, S. et al. Effects of Nanoanatase on the Photosynthetic Improvement of Chloroplast Damaged by Linolenic Acid. Biol Trace Elem Res 124, 173–183 (2008). https://doi.org/10.1007/s12011-008-8134-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-008-8134-7

Keywords

Navigation