Skip to main content

Advertisement

Log in

Antibacterial Effects of ZnO Nanodisks: Shape Effect of the Nanostructure on the Lethality in Escherichia coli

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The role of the shape of the nanostructure on the antibacterial effects of ZnO nanodisks has been investigated by detailed mass spectrometry-based proteomics along with other spectroscopic and microscopic studies on E. coli. The primary interaction study of the E. coli cells in the presence of ZnO nanodisks showed rigorous cell surface damage disrupting the cell wall/membrane components detected by microscopic and ATR-FTIR studies. Protein profiling of whole-cell extracts in the presence and absence of ZnO nanodisks identified several proteins that are upregulated and downregulated under the stress of the nanodisks. This suggests that the bacterial response to the primary stress leads to a secondary impact of ZnO nanodisk toxicity via regulation of the expression of specific proteins. Results showed that the ZnO nanodisks lead to the over-expression of peptidyl-dipeptidase Dcp, Transketolase-1, etc., which are important to maintaining the osmotic balance in the cell. The abrupt change in osmotic pressure leads to mechanical injury to the membrane, and nutritional starvation conditions, which is revealed from the expression of the key proteins involved in membrane-protein assembly, maintaining membrane integrity, cell division processes, etc. Thus, indicating a deleterious effect of ZnO nanodisk on the protective layer of E. coli. ZnO nanodisks seem to primarily affect the protective membrane layer, inducing cell death via the development of osmotic shock conditions, as one of the possible reasons for cell death. These results unravel a unique behavior of the disk-shaped ZnO nanostructure in executing lethality in E. coli, which has not been reported for other known shapes or morphologies of ZnO nanoforms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Sirelkhatim, A., et al. (2015). Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano-Micro Letters, 7(3), 219–242. https://doi.org/10.1007/s40820-015-0040-x

    Article  CAS  PubMed  Google Scholar 

  2. Kolodziejczak-Radzimska, A., & Jesionowski, T. (2014). Zinc oxide-from synthesis to application: A review. Materials (Basel), 7(4), 2833–2881. https://doi.org/10.3390/ma7042833

    Article  CAS  PubMed  Google Scholar 

  3. Jiang, J., Pi, J., Cai, J. (2018). The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorganic Chemistry and Applications, 2018. https://doi.org/10.1155/2018/1062562

  4. Mishra, P. K., Mishra, H., Ekielski, A., Talegaonkar, S., & Vaidya, B. (2017). Zinc oxide nanoparticles: A promising nanomaterial for biomedical applications. Drug Discovery Today, 22(12), 1825–1834. https://doi.org/10.1016/j.drudis.2017.08.006

    Article  CAS  PubMed  Google Scholar 

  5. Food and Drug Administration (FDA). (2019). CFR ­ Code of Federal Regulations Title 21., www.fda.gov, (vol. 721, no. 6, pp. 1–10), [Online]. Available: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfCFR/CFRSearch.cfm?fr=582.5991&SearchTerm=zinc%20oxide. Accessed 31 Mar 2021

  6. Tong, G. X., et al. (2013). Polymorphous ZnO complex architectures: Selective synthesis, mechanism, surface area and Zn-polar plane-codetermining antibacterial activity. Journal of Materials Chemistry B, 1(4), 454–463. https://doi.org/10.1039/c2tb00132b

    Article  CAS  PubMed  Google Scholar 

  7. Patrinoiu, G., et al. (2019). Eco-friendly synthesized spherical ZnO materials: Effect of the core-shell to solid morphology transition on antimicrobial activity. Materials Science and Engineering: C, 97(November 2018), 438–450. https://doi.org/10.1016/j.msec.2018.12.063

    Article  CAS  PubMed  Google Scholar 

  8. Cai, Q., et al. (2016). Insight into biological effects of zinc oxide nanoflowers on bacteria: Why morphology matters. ACS Applied Materials & Interfaces, 8(16), 10109–10120. https://doi.org/10.1021/acsami.5b11573

    Article  CAS  Google Scholar 

  9. Khan, M. F., et al. (2016). Sol-gel synthesis of thorn-like ZnO nanoparticles endorsing mechanical stirring effect and their antimicrobial activities: Potential role as nano-Antibiotics. Science and Reports, 6(March), 1–12. https://doi.org/10.1038/srep27689

    Article  CAS  Google Scholar 

  10. Wang, X., Yang, F., Yang, X. (2007) A study on the antibacterial activity of one-dimensional ZnO nanowire arrays : effects of the orientation and plane surface. 4419–4421. https://doi.org/10.1039/b708662h

  11. El-Nahas, S., El-sadek, M. S. A., Salman, H. M., & Elkady, M. M. (2021). Controlled morphological and physical properties of ZnO nanostructures synthesized by domestic microwave route. Materials Chemistry and Physics, 258(July 2020), 123885. https://doi.org/10.1016/j.matchemphys.2020.123885

    Article  CAS  Google Scholar 

  12. Jones, N., Ray, B., Ranjit, K. T., & Manna, A. C. (2008). Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiology Letters, 279(1), 71–76. https://doi.org/10.1111/j.1574-6968.2007.01012.x

    Article  CAS  PubMed  Google Scholar 

  13. Kadiyala, U., Turali-Emre, E. S., Bahng, J. H., Kotov, N. A., & Scott Vanepps, J. (2018). Unexpected insights into antibacterial activity of zinc oxide nanoparticles against methicillin resistant: Staphylococcus aureus (MRSA). Nanoscale, 10(10), 4927–4939. https://doi.org/10.1039/c7nr08499d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Khezerlou, A., Alizadeh-Sani, M., Azizi-Lalabadi, M., & Ehsani, A. (2018). Nanoparticles and their antimicrobial properties against pathogens including bacteria, fungi, parasites and viruses. Microbial Pathogenesis, 123(August), 505–526. https://doi.org/10.1016/j.micpath.2018.08.008

    Article  CAS  PubMed  Google Scholar 

  15. Tiwari, V., Mishra, N., Gadani, K., Solanki, P. S., Shah, N. A., & Tiwari, M. (2018). Mechanism of anti-bacterial activity of zinc oxide nanoparticle against Carbapenem-Resistant Acinetobacter baumannii. Frontiers in Microbiology, 9(JUN), 1–10. https://doi.org/10.3389/fmicb.2018.01218

    Article  Google Scholar 

  16. Xie, Y., He, Y., Irwin, P. L., Jin, T., & Shi, X. (2011). Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Applied and Environment Microbiology, 77(7), 2325–2331. https://doi.org/10.1128/AEM.02149-10

    Article  CAS  Google Scholar 

  17. Zhang, L., Zhao, J., Zheng, J., Li, L., & Zhu, Z. (2011). Hydrothermal synthesis of hierarchical nanoparticle-decorated ZnO microdisks and the structure-enhanced acetylene sensing properties at high temperatures. Sensors and Actuators B: Chemical, 158(1), 144–150. https://doi.org/10.1016/j.snb.2011.05.057

    Article  CAS  Google Scholar 

  18. Li, Z., Pan, W., Zhang, D., & Zhan, J. (2010). Morphology-dependent gas-sensing properties of ZnO nanostructures for chlorophenol. Chemistry - An Asian Journal, 5(8), 1854–1859. https://doi.org/10.1002/asia.201000036

    Article  CAS  PubMed  Google Scholar 

  19. Bin Jin, B., Wang, Y. F., & Zeng, J. H. (2016). Performance enhancement in titania based quantum dot sensitized solar cells through incorporation of disc shaped ZnO nanoparticles into photoanode. Chemical Physics Letters, 660, 76–80. https://doi.org/10.1016/j.cplett.2016.08.009

    Article  CAS  Google Scholar 

  20. Hingorani, S., Pillai, V., Kumar, P., Multani, M. S., & Shah, D. O. (1993). Microemulsion mediated synthesis of zinc-oxide nanoparticles for varistor studies. Materials Research Bulletin, 28(12), 1303–1310.

  21. Gold, K., Slay, B., Knackstedt, M., & Gaharwar, A. K. (2018). Antimicrobial activity of metal and metal-oxide based nanoparticles. Advances in Therapy, 1(3), 1700033. https://doi.org/10.1002/adtp.201700033

    Article  CAS  Google Scholar 

  22. Djurišić, A. B., et al. (2015). Toxicity of metal oxide nanoparticles: Mechanisms, characterization, and avoiding experimental artefacts. Small (Weinheim an der Bergstrasse, Germany), 11(1), 26–44. https://doi.org/10.1002/smll.201303947

    Article  CAS  PubMed  Google Scholar 

  23. Lakshmi Prasanna, V., & Vijayaraghavan, R. (2015). Insight into the mechanism of antibacterial activity of ZnO: Surface defects mediated reactive oxygen species even in the dark. Langmuir, 31(33), 9155–9162. https://doi.org/10.1021/acs.langmuir.5b02266

    Article  CAS  PubMed  Google Scholar 

  24. Appierot, G., et al. (2009). Enhanced antibacterial actiwity of nanocrystalline ZnO due to increased ROS-mediated cell injury. Advanced Functional Materials, 19(6), 842–852. https://doi.org/10.1002/adfm.200801081

    Article  CAS  Google Scholar 

  25. Leung, Y. H., et al. (2016). Toxicity of ZnO and TiO2 to Escherichia coli cells. Science and Reports, 6(October), 1–13. https://doi.org/10.1038/srep35243

    Article  CAS  Google Scholar 

  26. Ramalingam, B., Parandhaman, T., & Das, S. K. (2016). Antibacterial effects of biosynthesized silver nanoparticles on surface ultrastructure and nanomechanical properties of gram-negative bacteria viz. Escherichia coli and Pseudomonas aeruginosa. ACS Applied Materials and Interfaces, 8(7), 4963–4976. https://doi.org/10.1021/acsami.6b00161

    Article  CAS  PubMed  Google Scholar 

  27. Cui, Y., Zhao, Y., Tian, Y., Zhang, W., Lü, X., & Jiang, X. (2012). The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli. Biomaterials, 33(7), 2327–2333. https://doi.org/10.1016/j.biomaterials.2011.11.057

    Article  CAS  PubMed  Google Scholar 

  28. Planchon, M., Leger, T., Spalla, O., Huber, G., & Ferrari, R. (2017). Metabolomic and proteomic investigations of impacts of titanium dioxide nanoparticles on Escherichia coli. PLoS ONE, 12(6), 1–23. https://doi.org/10.1371/journal.pone.0178437

    Article  CAS  Google Scholar 

  29. Lee, J., Easteal, A. J., Pal, U., & Bhattacharyya, D. (2009). Evolution of ZnO nanostructures in sol-gel synthesis. Current Applied Physics, 9(4), 792–796. https://doi.org/10.1016/j.cap.2008.07.018

    Article  Google Scholar 

  30. Coico, R. (2005) Gram staining basic protocol commonly used techniques. Current Protocols in Microbiology, (1), A–3C. https://doi.org/10.1002/9780471729259.mca03cs00

  31. Kumar, A., Pandey, A. K., Singh, S. S., Shanker, R., & Dhawan, A. (2011). Engineered ZnO and TiO 2 nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli. Free Radical Biology & Medicine, 51(10), 1872–1881. https://doi.org/10.1016/j.freeradbiomed.2011.08.025

    Article  CAS  Google Scholar 

  32. Shevchenko, A., Tomas, H., Havliš, J., Olsen, J. V., & Mann, M. (2007). In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nature Protocols, 1(6), 2856–2860. https://doi.org/10.1038/nprot.2006.468

    Article  CAS  Google Scholar 

  33. Holder, C. F., & Schaak, R. E. (2019). Tutorial on powder X-ray diffraction for characterizing nanoscale materials. ACS Nano, 13(7), 7359–7365. https://doi.org/10.1021/acsnano.9b05157

    Article  CAS  PubMed  Google Scholar 

  34. Zhang, X., Shi, H., Liu, E., Hu, X., Zhang, K., & Fan, J. (2021). Preparation of polycrystalline ZnO nanoparticles loaded onto graphene oxide and their antibacterial properties. Materials Today Communications, 28(June), 102531. https://doi.org/10.1016/j.mtcomm.2021.102531

    Article  CAS  Google Scholar 

  35. Jin, D. H., Kim, D., Seo, Y., Park, H., & Huh, Y. D. (2014). Morphology-controlled synthesis of ZnO crystals with twinned structures and the morphology dependence of their antibacterial activities. Materials Letters, 115, 205–207. https://doi.org/10.1016/j.matlet.2013.10.056

    Article  CAS  Google Scholar 

  36. Li, W. J., Shi, E. W., Zhong, W. Z., & Yin, Z. W. (1999). Growth mechanism and growth habit of oxide crystals. Journal of Crystal Growth, 203(1), 186–196. https://doi.org/10.1016/S0022-0248(99)00076-7

    Article  CAS  Google Scholar 

  37. Cho, S., Jung, S.-H., & Lee, K.-H. (2008). Morphology-controlled growth of ZnO nanostructures using microwave irradiation: From basic to complex structures. Journal of Physical Chemistry C, 112(33), 12769–12776. https://doi.org/10.1021/jp803783s

    Article  CAS  Google Scholar 

  38. Cho, S., Jang, J., Jung, S., Lee, B. R., Oh, E. and Lee, K. (2009). Precursor effects of citric acid and citrates on ZnO crystal formation precursor effects of citric acid and citrates on ZnO crystal formation, (27). 3825–3831. https://doi.org/10.1021/la804009g

  39. Zhang, H., Yang, D., Li, D., Ma, X., Li, S., & Que, D. (2005). Controllable growth of ZnO microcrystals by a capping-molecule-assisted hydrothermal process. Crystal Growth & Design, 5(2), 547–550. https://doi.org/10.1021/cg049727f

    Article  CAS  Google Scholar 

  40. Tian, Z. R., et al. (2003). Complex and oriented ZnO nanostructures. Nature Materials, 2(12), 821–826. https://doi.org/10.1038/nmat1014

    Article  CAS  PubMed  Google Scholar 

  41. Das, S., Dutta, K., & Pramanik, A. (2013). Morphology control of ZnO with citrate: A time and concentration dependent mechanistic insight. CrystEngComm, 15(32), 6349–6358. https://doi.org/10.1039/c3ce40822a

    Article  CAS  Google Scholar 

  42. Coates, J. (2000) Interpretation of infrared spectra, a practical approach. Encyclopedia of Analytical Chemistry. © John Wiley& Sons Ltd, Chichester, 2000, pp. 10815–10837. https://doi.org/10.1097/00010694-197107000-00005

  43. Yogamalar, N. R., Srinivasan, R., & Bose, A. C. (2009). Multi-capping agents in size confinement of ZnO nanostructured particles. Optical Materials, 31(11), 1570–1574. https://doi.org/10.1016/j.optmat.2009.03.002

    Article  CAS  Google Scholar 

  44. Xiong, G., Pal, U., Serrano, J. G., Ucer, K. B., & Williams, R. T. (2006). Photoluminescence and FTIR study of ZnO nanoparticles: The impurity and defect perspective. Physica status solidi c, 3(10), 3577–3581. https://doi.org/10.1002/pssc.200672164

    Article  CAS  Google Scholar 

  45. Javed, R., Usman, M., Tabassum, S., & Zia, M. (2016). Effect of capping agents: Structural, optical and biological properties of ZnO nanoparticles. Applied Surface Science, 386, 319–326. https://doi.org/10.1016/j.apsusc.2016.06.042

    Article  CAS  Google Scholar 

  46. Mallakpour, S., & Nouruzi, N. (2017). Effects of citric acid-functionalized ZnO nanoparticles on the structural, mechanical, thermal and optical properties of polycaprolactone nanocomposite films. Materials Chemistry and Physics, 197, 129–137. https://doi.org/10.1016/j.matchemphys.2017.05.023

    Article  CAS  Google Scholar 

  47. Čepin, M., Hribar, G., Caserman, S., & Orel, Z. C. (2015). Morphological impact of zinc oxide particles on the antibacterial activity and human epithelia toxicity. Materials Science and Engineering C, 52, 204–211. https://doi.org/10.1016/j.msec.2015.03.053

    Article  CAS  PubMed  Google Scholar 

  48. Wahab, R., et al. (2007). Low temperature solution synthesis and characterization of ZnO nano-flowers. Materials Research Bulletin, 42(9), 1640–1648. https://doi.org/10.1016/j.materresbull.2006.11.035

    Article  CAS  Google Scholar 

  49. Khorsand Zak, A., Razali, R., Abd Majid, W. H., & Darroudi, M. (2011). Synthesis and characterization of a narrow size distribution of zinc oxide nanoparticles. International Journal of Nanomedicine, 6(1), 1399–1403. https://doi.org/10.2147/ijn.s19693

    Article  CAS  PubMed  Google Scholar 

  50. Sharma, P. K., Pandey, A. C., Zolnierkiewicz, G., Guskos, N., & Rudowicz, C. (2009). Relationship between oxygen defects and the photoluminescence property of ZnO nanoparticles: A spectroscopic view. Journal of Applied Physics, 106(9), 1–6. https://doi.org/10.1063/1.3256000

    Article  CAS  Google Scholar 

  51. Davis, K., Yarbrough, R., Froeschle, M., White, J., & Rathnayake, H. (2019). Band gap engineered zinc oxide nanostructures: Via a sol-gel synthesis of solvent driven shape-controlled crystal growth. RSC Advances, 9(26), 14638–14648. https://doi.org/10.1039/c9ra02091h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bahnemann, D. W., Kormann, C., & Hoffmann, M. R. (1987). Preparation and characterization of quantum size zinc oxide: A detailed spectroscopic study. Journal of Physical Chemistry, 91(14), 3789–3798. https://doi.org/10.1021/j100298a015

    Article  CAS  Google Scholar 

  53. Monticone, S., Tufeu, R., & Kanaev, A. V. (1998). Complex nature of the UV and visible fluorescence of colloidal ZnO nanoparticles. The Journal of Physical Chemistry B, 102(16), 2854–2862. https://doi.org/10.1021/jp973425p

    Article  CAS  PubMed  Google Scholar 

  54. Patrinoiu, G., Calderón-Moreno, J. M., Chifiriuc, C. M., Saviuc, C., Birjega, R., & Carp, O. (2016). Tunable ZnO spheres with high anti-biofilm and antibacterial activity via a simple green hydrothermal route. Journal of Colloid and Interface Science, 462, 64–74. https://doi.org/10.1016/j.jcis.2015.09.059

    Article  CAS  PubMed  Google Scholar 

  55. Chen, C. C., Liu, P., & Lu, C. H. (2008). Synthesis and characterization of nano-sized ZnO powders by direct precipitation method. Chemical Engineering Journal, 144(3), 509–513. https://doi.org/10.1016/j.cej.2008.07.047

    Article  CAS  Google Scholar 

  56. Bhattacharjee, S. (2016). DLS and zeta potential - What they are and what they are not? Journal of Controlled Release, 235, 337–351. https://doi.org/10.1016/j.jconrel.2016.06.017

    Article  CAS  PubMed  Google Scholar 

  57. Zhao, X., Li, M., Lou, X. (2013) Sol – gel assisted hydrothermal synthesis of ZnO microstructures : Morphology control and photocatalytic activity. Advanced Powder Technology. 2–8. https://doi.org/10.1016/j.apt.2013.06.004

  58. Kaper, J. B., Nataro, J. P., Mobley, H. L. T. (2004). Pathogenic Escherichia coli, 2(February). https://doi.org/10.1038/nrmicro818

  59. Kumar, R., Umar, A., Kumar, G., & Nalwa, H. S. (2017). Antimicrobial properties of ZnO nanomaterials: A review. Ceramics International, 43(5), 3940–3961. https://doi.org/10.1016/j.ceramint.2016.12.062

    Article  CAS  Google Scholar 

  60. Ramani, M., Ponnusamy, S., Muthamizhchelvan, C., Cullen, J., Krishnamurthy, S., & Marsili, E. (2013). Morphology-directed synthesis of ZnO nanostructures and their antibacterial activity. Colloids Surfaces B Biointerfaces, 105, 24–30. https://doi.org/10.1016/j.colsurfb.2012.12.056

    Article  CAS  PubMed  Google Scholar 

  61. Wang, Y. W., et al. (2014). Superior antibacterial activity of zinc oxide/graphene oxide composites originating from high zinc concentration localized around bacteria. ACS Applied Materials & Interfaces, 6(4), 2791–2798. https://doi.org/10.1021/am4053317

    Article  CAS  Google Scholar 

  62. Hartmann, M., Berditsch, M., Hawecker, J., Ardakani, M. F., Gerthsen, D., & Ulrich, A. S. (2010). Damage of the bacterial cell envelope by antimicrobial peptides gramicidin S and PGLa as revealed by transmission and scanning electron microscopy. Antimicrobial Agents and Chemotherapy, 54(8), 3132–3142. https://doi.org/10.1128/AAC.00124-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hajipour, M. J., et al. (2012). Antibacterial properties of nanoparticles. Trends in Biotechnology, 30(10), 499–511. https://doi.org/10.1016/j.tibtech.2012.06.004

    Article  CAS  PubMed  Google Scholar 

  64. Mendes, C. R., et al. (2022). Antibacterial action and target mechanisms of zinc oxide nanoparticles against bacterial pathogens. Science and Reports, 12(1), 1–10. https://doi.org/10.1038/s41598-022-06657-y

    Article  CAS  Google Scholar 

  65. Ann, L. C., et al. (2014). Antibacterial responses of zinc oxide structures against Staphylococcus aureus, Pseudomonas aeruginosa and Streptococcus pyogenes. Ceramics International, 40(2), 2993–3001. https://doi.org/10.1016/j.ceramint.2013.10.008

    Article  CAS  Google Scholar 

  66. Naumann, D. (2000). Infrared spectroscopy in microbiology. Encyclopedia of Analytical Chemistry. © John Wiley& Sons Ltd, Chichester, 2000, pp. 102–131. https://doi.org/10.1002/9780470027318.a0117.pub2

  67. Faghihzadeh, F., Anaya, N. M., Schifman, L. A., & Oyanedel-Craver, V. (2016). Fourier transform infrared spectroscopy to assess molecular-level changes in microorganisms exposed to nanoparticles. Nanotechnology for Environmental Engineering, 1(1), 1–16. https://doi.org/10.1007/s41204-016-0001-8

    Article  Google Scholar 

  68. Jiang, W., Yang, K., Vachet, R. W., & Xing, B. (2010). Interaction between oxide nanoparticles and biomolecules of the bacterial cell envelope as examined by infrared spectroscopy. Langmuir, 26(23), 18071–18077. https://doi.org/10.1021/la103738e

    Article  CAS  PubMed  Google Scholar 

  69. Kiwi, J., & Nadtochenko, V. (2005). Evidence for the mechanism of photocatalytic degradation of the bacterial wall membrane at the TiO2 interface by ATR-FTIR and laser kinetic spectroscopy. Langmuir, 21(10), 4631–4641. https://doi.org/10.1021/la0469831

    Article  CAS  PubMed  Google Scholar 

  70. Chakraborti, S., Mandal, A. K., Sarwar, S., Singh, P., Chakraborty, R., & Chakrabarti, P. (2014). Bactericidal effect of polyethyleneimine capped ZnO nanoparticles on multiple antibiotic resistant bacteria harboring genes of high-pathogenicity island. Colloids Surfaces B Biointerfaces, 121(September 2018), 44–53. https://doi.org/10.1016/j.colsurfb.2014.03.044

    Article  CAS  PubMed  Google Scholar 

  71. Venkatasubbu, G. D., Baskar, R., Anusuya, T., Seshan, C. A., & Chelliah, R. (2016). Toxicity mechanism of titanium dioxide and zinc oxide nanoparticles against food pathogens. Colloids Surfaces B Biointerfaces, 148(April 2019), 600–606. https://doi.org/10.1016/j.colsurfb.2016.09.042

    Article  CAS  PubMed  Google Scholar 

  72. Dwyer, D. J., Camacho, D. M., Kohanski, M. A., Callura, J. M., & Collins, J. J. (2012). Antibiotic-induced bacterial cell death exhibits physiological and biochemical hallmarks of apoptosis. Molecular Cell, 46(5), 561–572. https://doi.org/10.1016/j.molcel.2012.04.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Henrich, B., Becker, S., Schroeder, U., & Plapp, R. (1993). dcp gene of Escherichia coli: Cloning, sequencing, transcript mapping, and characterization of the gene product. Journal of Bacteriology, 175(22), 7290–7300. https://doi.org/10.1128/jb.175.22.7290-7300.1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Deutch, C. E., & Soffer, R. L. (1978). Escherichia coli mutants defective in dipeptidyl carboxypeptidase. Proceedings of the National Academy of Sciences, 75(12), 5998–6001. https://doi.org/10.1073/pnas.75.12.5998

    Article  CAS  Google Scholar 

  75. Kowalska, E., Kujda, M., Wolak, N., & Kozik, A. (2012). Altered expression and activities of enzymes involved in thiamine diphosphate biosynthesis in Saccharomyces cerevisiae under oxidative and osmotic stress. FEMS Yeast Research, 12(5), 534–546. https://doi.org/10.1111/j.1567-1364.2012.00804.x

    Article  CAS  PubMed  Google Scholar 

  76. Juhnke, H., Krems, B., Kötter, P., & Entian, K. D. (1996). Mutants that show increased sensitivity to hydrogen peroxide reveal an important role for the pentose phosphate pathway in protection of yeast against oxidative stress. Molecular and General Genetics, 252(4), 456–464. https://doi.org/10.1007/BF02173011

    Article  CAS  PubMed  Google Scholar 

  77. Styrvold, O. B., & Strom, A. R. (1991). Synthesis, accumulation, and excretion of trehalose in osmotically stressed Escherichia coli K-12 strains: Influence of amber suppressors and function of the periplasmic trehalase. Journal of Bacteriology, 173(3), 1187–1192. https://doi.org/10.1128/jb.173.3.1187-1192.1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Boos, W., Ehmann, U., Bremer, E., Middendorf, A., & Postma, P. (1987). Trehalase of Escherichia coli. Mapping and cloning of its structural gene and identification of the enzyme as a periplasmic protein induced under high osmolarity growth conditions. Journal of Biological Chemistry, 262(27), 13212–13218.

    Article  CAS  PubMed  Google Scholar 

  79. Strom, A. R., & Kaasen, I. (1993). Trehalose metabolism in Escherichia coli: Stress protection and stress regulation of gene expression. Molecular Microbiology, 8(2), 205–210. https://doi.org/10.1111/j.1365-2958.1993.tb01564.x

    Article  CAS  PubMed  Google Scholar 

  80. Lequette, Y., Ödberg-Ferragut, C., Bohin, J. P., & Lacroix, J. M. (2004). Identification of mdoD, an mdoG paralog which encodes a twin-arginine-dependent periplasmic protein that controls osmoregulated periplasmic glucan backbone structures. Journal of Bacteriology, 186(12), 3695–3702. https://doi.org/10.1128/JB.186.12.3695-3702.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bohin, J. P. (2000). Osmoregulated periplasmic glucans in Proteobacteria. FEMS Microbiology Letters, 186(1), 11–19. https://doi.org/10.1016/S0378-1097(00)00110-5

    Article  CAS  PubMed  Google Scholar 

  82. Oetiker, N. et al. (2018). Possible role of envelope components in the extreme copper resistance of the biomining Acidithiobacillus ferrooxidans. Genes (Basel), 9(7). https://doi.org/10.3390/genes9070347.

  83. Rago, I., et al. (2014). Zinc oxide microrods and nanorods: Different antibacterial activity and their mode of action against Gram-positive bacteria. RSC Advances, 4(99), 56031–56040. https://doi.org/10.1039/c4ra08462d

    Article  CAS  Google Scholar 

  84. Moussatova, A., Kandt, C., O’Mara, M. L., & Tieleman, D. P. (2008). ATP-binding cassette transporters in Escherichia coli. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1778(9), 1757–1771. https://doi.org/10.1016/j.bbamem.2008.06.009

    Article  CAS  PubMed  Google Scholar 

  85. Sklar, J. G., Wu, T., Kahne, D., & Silhavy, T. J. (2007). Defining the roles of the periplasmic chaperones SurA, Skp, and DegP in Escherichia coli. Genes & Development, 21(19), 2473–2484. https://doi.org/10.1101/gad.1581007

    Article  CAS  Google Scholar 

  86. Lazar, S. W., & Kolter, R. (1996). SurA assists the folding of Escherichia coli outer membrane proteins. Journal of Bacteriology, 178(6), 1770–1773. https://doi.org/10.1128/jb.178.6.1770-1773.1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Vertommen, D., Ruiz, N., Leverrier, P., Silhavy, T. J., & Collet, J. F. (2009). Characterization of the role of the escherichia coli periplasmic chaperone SurA using differential proteomics. Proteomics, 9(9), 2432–2443. https://doi.org/10.1002/pmic.200800794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Denoncin, K., Schwalm, J., Vertommen, D., & Silhavy, T. J. (2012). Dissecting the Escherichia coli periplasmic chaperone network using differential proteomics. Proteomics, 12(9), 1–21. https://doi.org/10.1002/pmic.201100633

    Article  CAS  Google Scholar 

  89. Yakhnina, A. A., & Bernhardt, T. G. (2020). The Tol-Pal system is required for peptidoglycan-cleaving enzymes to complete bacterial cell division. Proceedings of the National Academy of Sciences, 117(12), 6777–6783. https://doi.org/10.1073/pnas.1919267117

    Article  CAS  Google Scholar 

  90. Lloubès, R., et al. (2001). The Tol-Pal proteins of the Escherichia coli cell envelope: An energized system required for outer membrane integrity? Research in Microbiology, 152(6), 523–529. https://doi.org/10.1016/S0923-2508(01)01226-8

    Article  PubMed  Google Scholar 

  91. Szczepaniak, J., Press, C., & Kleanthous, C. (2020). The multifarious roles of Tol-Pal in Gram-negative bacteria. FEMS Microbiology Reviews, 44(4), 490–506. https://doi.org/10.1093/femsre/fuaa018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Carr, S., Penfold, C. N., Bamford, V., James, R., & Hemmings, A. M. (2000). The structure of TolB, an essential component of the tol-dependent translocation system, and its protein-protein interaction with the translocation domain of colicin E9. Structure, 8(1), 57–66. https://doi.org/10.1016/S0969-2126(00)00079-4

    Article  CAS  PubMed  Google Scholar 

  93. Kim, K. H., Aulakh, S., & Paetzel, M. (2012). The bacterial outer membrane β-barrel assembly machinery. Protein Science, 21(6), 751–768. https://doi.org/10.1002/pro.2069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lee, J. H., & Lee, J. (2010). Indole as an intercellular signal in microbial communities. FEMS Microbiology Reviews, 34(4), 426–444. https://doi.org/10.1111/j.1574-6976.2009.00204.x

    Article  CAS  PubMed  Google Scholar 

  95. Basurko, Marie-Jose., Marche, Michele, Darriet, Monique, & Cassaigne, Andre. (1999). Phosphoserine aminotransferase, the second step–catalyzing enzyme for serine biosynthesis. IUBMB Life, 48, 525–529.

    Article  CAS  PubMed  Google Scholar 

  96. Gu, P., Yang, F., Su, T., Li, F., Li, Y., & Qi, Q. (2014). Construction of an L-serine producing Escherichia coli via metabolic engineering. Journal of Industrial Microbiology and Biotechnology, 41(9), 1443–1450. https://doi.org/10.1007/s10295-014-1476-6

    Article  CAS  PubMed  Google Scholar 

  97. Lüders, S., Fallet, C., & Franco-Lara, E. (2009). Proteome analysis of the Escherichia coli heat shock response under steady-state conditions. Proteome Science, 7, 36. https://doi.org/10.1186/1477-5956-7-36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Segura, A., et al. (2012). Solvent tolerance in Gram-negative bacteria. Current Opinion in Biotechnology, 23(3), 415–421. https://doi.org/10.1016/j.copbio.2011.11.015

    Article  CAS  PubMed  Google Scholar 

  99. Shen, J. S. Y., Rudolph, J., & Stern, M. (1990). Glycinamide ribonucleotide synthetase from Escherichia coli: Cloning, overproduction, sequencing, isolation, and characterization+. American Chemical Society Biochemistry, 29(1), 218–227.

    Google Scholar 

  100. Matuła, K., et al. (2019). Phenotypic plasticity of Escherichia coli upon exposure to physical stress induced by ZnO nanorods. Science and Reports, 9(1), 1–12. https://doi.org/10.1038/s41598-019-44727-w

    Article  CAS  Google Scholar 

  101. Neal, A. L., Kabengi, N., Grider, A., & Bertsch, P. M. (2012). Can the soil bacterium Cupriavidus necator sense ZnO nanomaterials and aqueous Zn2+ differentially? Nanotoxicology, 6(4), 371–380. https://doi.org/10.3109/17435390.2011.579633

    Article  CAS  PubMed  Google Scholar 

  102. Sohm, B., Immel, F., Bauda, P., & Pagnout, C. (2015). Insight into the primary mode of action of TiO2 nanoparticles on Escherichia coli in the dark. Proteomics, 15(1), 98–113. https://doi.org/10.1002/pmic.201400101

    Article  CAS  PubMed  Google Scholar 

  103. Pathakoti, K., Manubolu, M., min Hwang, H. (2020). Mechanistic insights into TiO2 and ZnO nanoparticle-induced metabolic changes in Escherichia coli under solar simulated light irradiation. Water, Air, & Soil Pollution, 231(1). https://doi.org/10.1007/s11270-019-4388-2

Download references

Acknowledgements

The authors are thankful to Prof. Vivek Polshettiwar, Prof. Deepa Khushalani, and Mr. Balasaheb Chandanshive for helping in carrying out characterization experiments. The authors are also thankful to Mr. Bharat T Kansara for providing technical assistance in LCMS studies and for analyzing Proteomics data. The authors also acknowledge National Centre for Nanosciences and Nanotechnology, University of Mumbai (NCNNUM), for providing the nanoparticle characterization facilities.

Funding

This work was supported by the Tata Institute of Fundamental Research, Mumbai, and funded by the Department of Atomic Energy, Government of India, under project identification no. RT14003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bhupendra Pushkar or Shyamalava Mazumdar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1009 KB)

Supplementary file2 (PDF 2166 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaiswal, P.B., Jejurikar, S., Mondal, A. et al. Antibacterial Effects of ZnO Nanodisks: Shape Effect of the Nanostructure on the Lethality in Escherichia coli. Appl Biochem Biotechnol 195, 3067–3095 (2023). https://doi.org/10.1007/s12010-022-04265-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04265-0

Keywords

Navigation