Skip to main content

Advertisement

Log in

Eminent Industrial and Biotechnological Applications of Laccases from Bacterial Source: a Current Overview

  • Review Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract 

Laccases are blue multicopper oxidases that oxidize a wide range of phenolic as well as non-phenolic substrates in the presence or absence of mediators. They occur in various species of bacteria, fungi, insects, and plants; bacterial laccases show high substrate specificity. Bacteria produce these enzymes either extracellularly or intracellularly and exhibit stability to a wide range of pH and temperature. Therefore, they are suitable for various industrial processes such as food, textile, and paper and pulp industry. They are also valuable for producing biofuels, pharmaceuticals, biosensors, and degradation of various environmental pollutants and xenobiotics compounds. Since bacterial laccases are more versatile in the sense of nutritional needs and ecological factors, their use can provide a promising solution to various problems related to industry and the field of biotechnology. However, there is a need for a thorough understanding of the chemistry and activity of bacterial laccases to enable their full potential use in bioremediation and biofuel production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Shraddha, Shekher, R., Sehgal, S., Kamathania, M. and Kumar. A. (2011). Laccase: Microbial sources, production, purification and potential biotechnological applications. Enzyme. Res. 2011.

  2. Gianfreda, L., Xu, F., & Bollag, J. M. (1999). Laccases: A useful group of oxidoreductive enzymes. Bioremediation Journal, 3(1), 1–26.

    Article  CAS  Google Scholar 

  3. Couto, S. R., & Herrera, J. L. T. (2006). Industrial and biotechnological applications of laccases: A review. Biotechnol Advances, 24(5), 500–513.

    Article  CAS  Google Scholar 

  4. Singh, D., and Gupta, N. (2020). Microbial laccase: A robust enzyme and its industrial applications. Biologia.

  5. Givaudan, A., Effosse, A., Faure, D., Potier, P., Bouillant, M. L., & Bally, R. (1993). Polyphenol oxidase in Azospirillum lipoferum isolated from rice rhizosphere: Evidence for laccase activity in non-motile strains of Azospirillumlipoferum. FEMS Microbiology Letters, 108(2), 205–210.

    Article  CAS  Google Scholar 

  6. Liu, Y., Huang, L., Guo, W., Jia, L., Fu, Y., Gui, S., & Lu, F. (2017). Cloning, expression, and characterization of a thermostable and pH-stable laccase from Klebsiella pneumoniae and its application to dye decolorization. Process Biochemistry, 53, 125–134.

    Article  CAS  Google Scholar 

  7. Uthandi, S., Saad, B., Humbard, M. A., & Maupin-Furlow, J. A. (2010). LccA, an archaeal laccase secreted as a highly stable glycoprotein into the extracellular medium by Haloferaxvolcanii. Applied and Environmental Microbiology, 76(3), 733–743.

    Article  CAS  PubMed  Google Scholar 

  8. Martins, L. O., Durao, P., Brissos, V., & Lindley, P. F. (2015). Laccases of prokaryotic origin: Enzymes at the interface of protein science and protein technology. Cellular and Molecular Life Sciences, 72(5), 911–922.

    Article  CAS  PubMed  Google Scholar 

  9. Chauhan, P. S., Goradia, B., & Saxena, A. (2017). Bacterial laccase: recent update on production, properties and industrial applications. 3 Biotech, 7(5), 1–20.

    Article  CAS  Google Scholar 

  10. Singh, G., Bhalla, A., Kaur, P., Capalash, N., & Sharma, P. (2011). Laccase from prokaryotes: A new source for an old enzyme. Reviews in Environmental Science & Biotechnology, 10(4), 309–326.

    Article  Google Scholar 

  11. Chandra, R., & Chowdhary, P. (2015). Properties of bacterial laccases and their application in bioremediation of industrial wastes. Environmental Science. Processes & Impacts, 17(2), 326–342.

    Article  CAS  Google Scholar 

  12. Bilal, M., & Iqbal, H. M. (2019). Sustainable bioconversion of food waste into high-value products by immobilized enzymes to meet bio-economy challenges and opportunities–A review. International Food Research Journal, 123, 226–240.

    Article  CAS  Google Scholar 

  13. Mehra, R., Muschiol, J., Meyer, A. S., & Kepp, K. P. (2018). A structural-chemical explanation of fungal laccase activity. Science and Reports, 8(1), 1–16.

    CAS  Google Scholar 

  14. Jones, S. M., & Solomon, E. I. (2015). Electron transfer and reaction mechanism of laccases. Cellular and Molecular Life Sciences, 72, 869–883.

    Article  CAS  PubMed  Google Scholar 

  15. Coria-Oriundo, L. L., Battaglini, F., & Wirth, S. A. (2021). Efficient decolorization of recalcitrant dyes at neutral/alkaline pH by a new bacterial laccase-mediator system. Ecotoxicology and Environmental Safety, 217, 112237.

    Article  CAS  PubMed  Google Scholar 

  16. Galai, S., Korri-Youssoufi, H., & Marzouki, M. N. (2014). Characterization of yellow bacterial laccase SmLac/role of redox mediators in azo dye decolorization. Journal of Chemical Technology and Biotechnology, 89, 1741–1750.

    Article  CAS  Google Scholar 

  17. Taguchi, T., Ebihara, K., Yanagisaki, C., et al. (2018). Decolorization of recalcitrant dyes by a multicopper oxidase produced by Iodidimonas sp. Q-1 with iodide as a novel inorganic natural redox mediator. Scientific Reports, 8, 6717.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Afreen, S., Shamsi, T. N., Baig, M. A., Ahmad, N., Fatima, S., Qureshi, M. I., Hassan, M. I., & Fatma, T. (2017). A novel multicopper oxidase (laccase) from cyanobacteria: Purification, characterization with potential in the decolorization of anthraquinonic dye. PLoS One, 12(4), e0175144. https://doi.org/10.1371/journal.pone.0175144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mishra, S. K., & Srivastava, S. K. (2016). Production of extracellular laccase from bacterial strain Bacillus subtilis MTCC 1039 using different parameter. Biosciences Biotechnology Research Asia, 13, 1645–1650. https://doi.org/10.13005/bbra/2312

    Article  Google Scholar 

  20. Muthukumarasamy, N.P., Jackson, B., Joseph Raj, A., and Sevanan, M. (2015). Production of extracellular laccase from Bacillus subtilis MTCC 2414 using agroresidues as a potential substrate. Biochemistry research international. 765190.

  21. Rajeswari, M., Vennila, K., & Bhuvaneswari, V. (2015). Optimization of laccase production media by Bacilllus cereus TSS1 using Box-Behnken design. International Journal of Chemistry and Pharmaceutical Sciences, 6(1), 95–101.

    CAS  Google Scholar 

  22. Solano, F., Garcia, E., Perez, D., & Sanchez-Amat, A. (1997). Isolation and characterization of strain MMB-1 (CECT 4803), a novel melanogenic marine bacterium. Applied and Environmental Microbiology, 63(9), 3499–3506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mojsov, K. D. (2014). Biotechnological applications of laccases in the textile industry. Savremene tehnologije, 3(1), 76–79.

    Article  Google Scholar 

  24. Zheng, F., Cui, B. K., Wu, X. J., Meng, G., Liu, H. X., & Si, J. (2016). Immobilization of laccase onto chitosan beads to enhance its capability to degrade synthetic dyes. International Biodeterioration & Biodegradation, 110, 69–78.

    Article  CAS  Google Scholar 

  25. Zeng, S., Qin, X., & Xia, L. (2017). Degradation of the herbicide isoproturon by laccase-mediator systems. Biochemical Engineering Journal, 119, 92–100.

    Article  CAS  Google Scholar 

  26. Xu, X., Xu, Z., Shi, S., & Lin, M. (2017). Lignocellulose degradation patterns, structural changes, and enzyme secretion by Inonotus obliquus on straw biomass under submerged fermentation. Bioresource Technology, 241, 415–423.

    Article  CAS  PubMed  Google Scholar 

  27. Baiocco, P., Barreca, A. M., Fabbrini, M., Galli, C., & Gentili, P. (2003). Promoting laccase activity towards non-phenolic substrates: A mechanistic investigation with some laccase–mediator systems. Organic & Biomolecular Chemistry, 1(1), 191–197.

    Article  CAS  Google Scholar 

  28. Claus, H. (2003). Laccases and their occurrence in prokaryotes. Archives of Microbiology, 179(3), 145–150.

    Article  CAS  PubMed  Google Scholar 

  29. Roberts, S. A., Weichsel, A., Grass, G., Thakali, K., Hazzard, J. T., Tollin, G., & Montfort, W. R. (2002). Crystal structure and electron transfer kinetics of CueO, a multicopper oxidase required for copper homeostasis in Escherichia coli. Proceedings of the National academy of Sciences of the United States of America, 99(5), 2766–2771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ashraf, F., Irfan, M., Shakir, H. A., Ali, S., & Khan, M. (2020). An overview of production and industrial exploitation of bacterial laccases. Punjab University Journal of Zoology, 35(1), 147–156.

    Article  Google Scholar 

  31. Madhavi, V., & Lele, S. S. (2009). Laccase: Properties and applications. Bio Resources., 4(4), 1694–1717.

    Google Scholar 

  32. Arregui, L., Ayala, M., Gómez-Gil, X., Gutiérrez-Soto, G., Hernández-Luna, C. E., de Los, H., Santos, M., Levin, L., Rojo-Domínguez, A., Romero-Martínez, D., Saparrat, M., Trujillo-Roldán, M. A., & Valdez-Cruz, N. A. (2019). Laccases: Structure, function, and potential application in water bioremediation. Microbial Cell Factories, 18(1), 200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Singh, G., Sharma, P., & Capalash, N. (2009). Performance of an alkalophilic and halotolerant laccase from γ-proteobacterium JB in the presence of industrial pollutants. Journal of General and Applied Microbiology, 55(4), 283–289.

    Article  CAS  Google Scholar 

  34. McMahon, A. M., Doyle, E. M., Brooks, S., & O’Connor, K. E. (2007). Biochemical characterisation of the coexisting tyrosinase and laccase in the soil bacterium Pseudomonas putida F6. Enyzme and Microbial Technology, 40(5), 1435–1441.

    Article  CAS  Google Scholar 

  35. Mongkolthanaruk, W., Tongbopit, S., & Bhoonobtong, A. (2012). Independent behavior of bacterial laccases to inducers and metal ions during production and activity. African Journal of Biotechnology, 11(39), 9391–9398.

    CAS  Google Scholar 

  36. Sondhi, S., Sharma, P., Saini, S., Puri, N., & Gupta, N. (2014). Purification and characterization of an extracellular, thermo-alkali-stable, metal tolerant laccase from Bacillus tequilensis SN4. PloS One, 9(5), e96951.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Fernandes, T. A. R., da Silveira, W. B., Passos, F. M. L. and Zucchi, T.D. (2014). Laccases from Actinobacteria-What we have and what to expect. Advances in Applied Microbiology 2014.

  38. Prins, A., Kleinsmidt, L., Khan, N., Kirby, B., Kudanga, T., Vollmer, J., & Le Roes-Hill, M. (2015). The effect of mutations near the T1 copper site on the biochemical characteristics of the small laccase from Streptomyces coelicolor A3 (2). Enyzme and Microbial Technology, 68, 23–32.

    Article  CAS  Google Scholar 

  39. Sharma, P., Goel, R., & Capalash, N. (2007). Bacterial laccases. World. Journal of Microbiology and Biotechnology, 23, 823–832.

    Article  CAS  Google Scholar 

  40. Sanchez-Amat, A., & Solano, F. (1997). A pluripotent polyphenol oxidase from the melanogenic marine Alteromonas sp. shares catalytic capabilities of tyrosinases and laccases. Biochemical and Biophysical Research Communications, 240(3), 787–792.

    Article  CAS  PubMed  Google Scholar 

  41. Huber, M., & Lerch, K. (1987). The influence of copper on the induction of tyrosinase and laccase in Neurospora crassa. FEBS letters., 219(2), 335–338. https://doi.org/10.1016/0014-5793(87)80247-8

    Article  CAS  PubMed  Google Scholar 

  42. Chen, S. C., Ge, W., & Buswell, J. A. (2004). Molecular cloning of a new laccase from the edible staw mushroom Volvarielle volvacea: Possible involvement in fruit body development. FEMS Microbiology Letters, 230, 171–176.

    Article  CAS  PubMed  Google Scholar 

  43. Dedeyan, B., Klonowska, A., Tagger, S., Tron, T., Iacazio, G., Gil, G., & Petit, J. L. (2000). Biochemical and molecular characterization of a laccase from Marasmius quercophilus. Applied and Environment Microbiology, 66, 925–929.

    Article  CAS  Google Scholar 

  44. Singh, G., Capalash, N., Goel, R., & Sharma, P. (2007). A pH-stable laccase from alkali-tolerant γ-proteobacterium JB: Purification, characterization and indigo carmine degradation. Enzyme and Microbial Technology., 41, 794–799.

    Article  CAS  Google Scholar 

  45. Ye, M., Li, G., Liang, W. Q., & Liu, Y. H. (2010). Molecular cloning and characterization of a novel metagenome-derived multicopper oxidase with alkaline laccase activity and highly soluble expression. Applied Microbiology and Biotechnology, 87(3), 1023–1031.

    Article  CAS  PubMed  Google Scholar 

  46. Ruijssenaars, H. J., & Hartmans, S. (2004). A cloned Bacillus halodurans multicopper oxidase exhibiting alkaline laccase activity. Applied Microbiology and Biotechnology, 65, 177–182.

    Article  CAS  PubMed  Google Scholar 

  47. Gray, H. B., Malmström, B. G., & Williams, R. J. P. (2000). Copper coordination in blue proteins. JBIC Journal of Biological Inorganic Chemistry, 5(5), 551–559.

    Article  CAS  PubMed  Google Scholar 

  48. Enguita, F. J., Martins, L. O., Henriques, A. O., & Carrondo, M. A. (2003). Crystal structure of a bacterial endospore coat component: A laccase with enhanced thermostability properties. Journal of Biological Chemistry, 278(21), 19416–19425.

    Article  CAS  Google Scholar 

  49. Janusz, G., Pawlik, A., Świderska-Burek, U., Polak, J., Sulej, J., Jarosz-Wilkołazka, A., & Paszczyński, A. (2020). Laccase properties, physiological functions, and evolution. International Journal of Molecular Sciences, 21(3), 966.

    Article  CAS  PubMed Central  Google Scholar 

  50. Enguita, F. J., Marçal, D., Martins, L. O., Grenha, R., Henriques, A. O., Lindley, P. F., & Carrondo, M. A. (2004). Substrate and dioxygen binding to the endospore coat laccase from Bacillus subtilis. Journal of Biological Chemistry, 279(22), 23472–23476.

    Article  CAS  Google Scholar 

  51. Skálová, T., Dohnálek, J., Østergaard, L. H., Østergaard, P. R., Kolenko, P., Dušková, J., & Hašek, J. (2009). The structure of the small laccase from Streptomyces coelicolor reveals a link between laccases and nitrite reductases. Journal of Molecular Biology, 385(4), 1165–1178.

    Article  PubMed  CAS  Google Scholar 

  52. Machczynski, M. C., Vijgenboom, E., Samyn, B., & Canters, G. W. (2004). Characterization of SLAC: A small laccase from Streptomyces coelicolor with unprecedented activity. Protein Science, 13(9), 2388–2397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gunne, M., Höppner, A., Hagedoorn, P. L., & Urlacher, V. B. (2014). Structural and redox properties of the small laccase S sl1 from Streptomyces sviceus. FEBS Journal, 281(18), 4307–4318.

    Article  CAS  Google Scholar 

  54. Munk, L., Sitarz, A. K., Kalyani, D. C., Mikkelsen, J. D., & Meyer, A. S. (2015). Can laccases catalyze bond cleavage in lignin? Biotechnology Advances, 33(1), 13–24.

    Article  CAS  PubMed  Google Scholar 

  55. Hullo, M. F., Moszer, I., Danchin, A., & Martin-Verstraete, I. (2001). CotA of Bacillus subtilis is a copper-dependent laccase. Journal of Bacteriology Research, 183(18), 5426–5430.

    Article  CAS  Google Scholar 

  56. Koschorreck, K., Richter, S. M., Ene, A. B., Roduner, E., Schmid, R. D., & Urlacher, V. B. (2008). Cloning and characterization of a new laccase from Bacillus licheniformis catalyzing dimerization of phenolic acids. Applied Microbiology and Biotechnology, 79(2), 217–224.

    Article  CAS  PubMed  Google Scholar 

  57. Reiss, R., Ihssen, J., & Thöny-Meyer, L. (2011). Bacillus pumilus laccase: A heat stable enzyme with a wide substrate spectrum. BMA Biotechnology, 11(1), 1–11.

    CAS  Google Scholar 

  58. Castro-Sowinski, S., Martinez-Drets, G., & Okon, Y. (2002). Laccase activity in melanin-producing strains of Sinorhizobium meliloti. FEMS Microbiology Letters, 209(1), 119–125.

    Article  CAS  PubMed  Google Scholar 

  59. Suzuki, T., Endo, K., Ito, M., Tsujibo, H., Miyamoto, K., & Inamori, Y. (2003). A thermostable laccase from Streptomyces lavendulae REN-7: Purification, characterization, nucleotide sequence, and expression. Bioscience, Biotechnology, and Biochemistry, 67(10), 2167–2175.

    Article  CAS  PubMed  Google Scholar 

  60. Solano, F., Lucas-Elı́o, P., López-Serrano, D., Fernández, E., & Sanchez-Amat, A. (2001). Dimethoxyphenol oxidase activity of different microbial blue multicopper proteins. FEMS Microbiology Letters, 204(1), 175–181.

    Article  CAS  PubMed  Google Scholar 

  61. Endo, K., Hayashi, Y., Hibi, T., Hosono, K., Beppu, T., & Ueda, K. (2003). Enzymological characterization of EpoA, a laccase-like phenol oxidase produced by Streptomyces griseus. Journal of Biochemistry, 133(5), 671–677.

    Article  CAS  PubMed  Google Scholar 

  62. Alexandre, G., & Zhulin, I. B. (2000). Laccases are widespread in bacteria. Trends in Biotechnology, 18(2), 41–42.

    Article  CAS  PubMed  Google Scholar 

  63. Miyazaki, K. (2005). A hyperthermophilic laccase from Thermus thermophilus HB27. Extremophiles, 9(6), 415–425.

    Article  CAS  PubMed  Google Scholar 

  64. Palanisami, S., Saha, S. K., & Lakshmanan, U. (2010). Laccase and polyphenol oxidase activities of marine cyanobacteria: A study with Poly R-478 decolourization. World Journal of Microbiology & Biotechnology, 26(1), 63–69.

    Article  CAS  Google Scholar 

  65. Martins, L. O., Soares, C. M., Pereira, M. M., Teixeira, M., Costa, T., Jones, G. H., & Henriques, A. O. (2002). Molecular and biochemical characterization of a highly stable bacterial laccase that occurs as a structural component of Bacillus subtilis endospore coat. Journal of Biological Chemistry, 277(21), 18849–18859.

    Article  CAS  Google Scholar 

  66. Dubé, E., Shareck, F., Hurtubise, Y., Daneault, C., & Beauregard, M. (2008). Homologous cloning, expression, and characterization of a laccase from Streptomyces coelicolor and enzymatic decolourisation of an indigo dye. Applied Microbiology and Biotechnology, 79(4), 597–603.

    Article  PubMed  CAS  Google Scholar 

  67. Kumar, A., Vanamala, A. and Kumar, R. (2005). Exploration of bacterial laccase in Pseudomonas stutzeri and its application in bleaching the wood pulp: N6–008P. FEBS. J. 272.

  68. Arias, M. E., Arenas, M., Rodríguez, J., Soliveri, J., Ball, A. S., & Hernández, M. (2003). Kraft pulp bio-bleaching and mediated oxidation of a non-phenolic substrate by laccase from Streptomyces cyaneus CECT 3335. Applied and Environment Microbiology, 69(4), 1953–1958.

    Article  CAS  Google Scholar 

  69. Romero, S., Blánquez, P., Caminal, G., Font, X., Sarrà, M., Gabarrell, X., & Vicent, T. (2006). Different approaches to improving the textile dye degradation capacity of Trametes versicolor. Biochemical Engineering Journal, 31(1), 42–47.

    Article  CAS  Google Scholar 

  70. Niladevi, K. N., & Prema, P. (2008). Immobilization of laccase from Streptomyces psammoticus and its application in phenol removal using packed bed reactor. World Journal of Microbiology & Biotechnology, 24, 1215–1222. https://doi.org/10.1007/s11274-007-9598-x

    Article  CAS  Google Scholar 

  71. Paszczynski, A., Pasti, M. B., Goszczynski, S., Crawford, D. L., & Crawford, R. L. (1991). New approach to improve degradation of recalcitrant azo dyes by Streptomyces spp. and Phanerochaete chrysosporium. Enzyme and Microbial Technology, 13(5), 378–384.

    Article  CAS  Google Scholar 

  72. Held, C., Kandelbauer, A., Schröder, M., Cavaco-Paulo, A., & Gübitz, G. M. (2005). Biotransformation of phenolics with laccase containing bacterial spores. Environmental Chemistry Letters, 3(2), 74–77.

    Article  CAS  Google Scholar 

  73. Bains, J., Capalash, N., & Sharma, P. (2003). Laccase from a non-melanogenic, alkalotolerant γ-proteobacterium JB isolated from industrial wastewater drained soil. Biotechnology Letters, 25(14), 1155–1159.

    Article  CAS  PubMed  Google Scholar 

  74. Naclerio, G., Falasca, A., Petrella, E., Nerone, V., Cocco, F. and Celico, F. (2010). Potential role of Bacillus endospores in soil amended by olive mill wastewater. 61(11), 2873-2879

  75. Zhang, M., Wu, F., Wei, Z., Xiao, Y., & Gong, W. (2006). Characterization and decolorization ability of a laccase from Panus rudis. Enyzme and Microbial Technology, 39(1), 92–97.

    Article  CAS  Google Scholar 

  76. Da Cunha, M. A. A., Barbosa, A. M., Giese, E. C., & Dekker, R. F. H. (2003). The effect of carbohydrate carbon sources on the production of constitutive and inducible laccases by Botryosphaeria sp. Journal of Basic Microbiology, 43, 385–392.

    Article  CAS  Google Scholar 

  77. Jhadav, A., Vamsi, K. K., Khairnar, Y., Boraste, A., & Gupta, N. (2009). Optimization of production and partial purification of laccase by Phanerochaete chrysosporium using submerged fermentation. International Journal of Microbiology Research, 1, 9–12.

    Article  Google Scholar 

  78. Diamantidis, G., Effosse, A., Potier, P., & Bally, R. (2000). Purification and characterization of the first bacterial laccase in the rhizospheric bacterium Azospirillum lipoferum. Soil Biology & Biochemistry, 32, 919–992.

    Article  CAS  Google Scholar 

  79. Shleev, S. V., Morozova, O. V., Nikitina, O. V., Gorshina, E. S., Rusinova, T. S., et al. (2004). Comparison of physico-chemical characteristics of four laccases from different basidiomycetes. Biochimie, 86, 693–703.

    Article  CAS  PubMed  Google Scholar 

  80. Ribeiro, D. S., Henrique, S. M., Oliveira, L. S., Macedo, G. A., & Fleuri, L. F. (2010). Enzymes in juice processing: A review. International Journal of Food Science, 45(4), 635–641.

    Article  CAS  Google Scholar 

  81. Brijwani, K., Rigdon, A. and Vadlani, P.V. (2010). Fungal laccases: Production, function, and applications in food processing. Enzyme Research 2010.

  82. Osma, J.F., Toca-Herrera, J.L. and Rodríguez-Couto, S. (2010). Uses of laccases in the food industry. Enzyme Research 2010.

  83. Minussi, R. C., Rossi, M., Bologna, L., Rotilio, D., Pastore, G. M., & Durán, N. (2007). Phenols removal in musts: Strategy for wine stabilization by laccase. Journal of Molecular Catalysis. B, Enzymatic, 45(3–4), 102–107.

    Article  CAS  Google Scholar 

  84. Mayolo-Deloisa, K., González-González, M., & Rito-Palomares, M. (2020). Laccases in food industry: Bioprocessing, potential industrial and biotechnological applications. Frontiers in Bioengineering and Biotechnology, 8, 222.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Norsker, M., Jensen, M., & Adler-Nissen, J. (2000). Enzymatic gelation of sugar beet pectin in food products. Food Hydrocolloids, 14(3), 237–243.

    Article  CAS  Google Scholar 

  86. Mishra, G., & Tripathy, M. (1993). A critical review of the treatments for decolourization of textile effluent. Colourage, 40, 35–35.

    CAS  Google Scholar 

  87. Banat, I. M., Nigam, P., Singh, D., & Marchant, R. (1996). Microbial decolorization of textile-dyecontaining effluents: A review. Bioresource Technology, 58(3), 217–227.

    Article  CAS  Google Scholar 

  88. Juang, R. S., Tseng, R. L., Wu, F. C., & Lin, S. J. (1996). Use of chitin and chitosan in lobster shell wastes for color removal from aqueous solutions. Journal of Environmental Science and Health, Part A, 31(2), 325–338.

    Google Scholar 

  89. Wesenberg, D., Kyriakides, I., & Agathos, S. N. (2003). White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnology Advances, 22(1–2), 161–187.

    Article  CAS  PubMed  Google Scholar 

  90. Kiro, K. (2013). Production and application of laccase in textile industry. Tekstilna industrija., 61(4), 11–15.

    Google Scholar 

  91. Baughman, G. L., & Perenich, T. A. (1988). Fate of dyes in aquatic systems: I solubility and partitioning of some hydrophobic dyes and related compounds. Environmental Toxicology and Chemistry, 7, 183–199.

    Article  CAS  Google Scholar 

  92. Tavares, A. P., Cristóvão, R. O., Gamelas, J. A., Loureiro, J. M., Boaventura, R. A., & Macedo, E. A. (2009). Sequential decolourization of reactive textile dyes by laccase mediator system. Journal of Chemical Technology and Biotechnology, 84(3), 442–446.

    Article  CAS  Google Scholar 

  93. Abadulla, E., Tzanov, T., Costa, S., Robra, K. H., Cavaco-Paulo, A., & Gübitz, G. M. (2000). Decolorization and detoxification of textile dyes with a laccase from Trametes hirsuta. Applied and Environment Microbiology, 66(8), 3357–3362.

    Article  CAS  Google Scholar 

  94. Couto, S. R., & Sanromán, M. A. (2005). Coconut flesh: A novel raw material for laccase production by Trametes hirsuta under solid-state conditions: Application to Lissamine Green B decolourization. Journal of Food Engineering, 71(2), 208–213.

    Article  Google Scholar 

  95. Roriz, M. S., Osma, J. F., Teixeira, J. A., & Couto, S. R. (2009). Application of response surface methodological approach to optimise Reactive Black 5 decolouration by crude laccase from Trametes pubescens. Journal of Hazardous Materials, 169(1–3), 691–696.

    Article  CAS  PubMed  Google Scholar 

  96. Novotný, Č, Erbanova, P., Cajthaml, T., Rothschild, N., Dosoretz, C., & Šašek, V. (2000). Irpex lacteus, a white rot fungus applicable to water and soil bioremediation. Appl. Microbiol. Biotechn., 54(6), 850–853.

    Article  Google Scholar 

  97. Pazarlıoǧlu, N. K., Sariişik, M., & Telefoncu, A. (2005). Laccase: Production by Trametes versicolor and application to denim washing. Process Biochemistry, 40(5), 1673–1678.

    Article  CAS  Google Scholar 

  98. Zille, A. 1996. Laccase reactions for textile applications, PhD Thesis, Universidade do Minho, Portugal.

  99. Sharma, H. S. S., Whiteside, L., & Kernaghan, K. (2005). Enzymatic treatment of flax fibre at the roving stage for production of wet-spun yarn. Enzyme and Microbial Technology, 37(4), 386–394.

    Article  CAS  Google Scholar 

  100. Lantto, R., Schönberg, C., Buchert, J., & Heine, E. (2004). Effects of laccase-mediator combinations on wool. Textile Research Journal, 74(8), 713–717.

    Article  CAS  Google Scholar 

  101. Selvam, K., Swaminathan, K., & Chae, K. S. (2020). Production and industrial exploitation of bacterial laccases. Bioresource Technology, 35(1), 156.

    Google Scholar 

  102. Kuhad, R.C., Singh, A. and Eriksson, K.E.L. (1997). Microorganisms and enzymes involved in the degradation of plant fiber cell walls. Biotechnology in the pulp and paper industry. 45–125.

  103. Gamelas, J. A., Tavares, A. P., Evtuguin, D. V., & Xavier, A. M. (2005). Oxygen bleaching of kraft pulp with polyoxometalates and laccase applying a novel multi-stage process. Journal of Molecular Catalysis. B, Enzymatic, 33(3–6), 57–64.

    Article  CAS  Google Scholar 

  104. Bourbonnais, R., Paice, M. G., Freiermuth, B., Bodie, E., & Borneman, S. (1997). Reactivities of various mediators and laccases with kraft pulp and lignin model compounds. Applied and Environmental Microbiology, 63(12), 4627–4632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Virk, A. P., Sharma, P., & Capalash, N. (2012). Use of laccase in pulp and paper industry. Biotechnology Progress, 28(1), 21–32.

    Article  CAS  PubMed  Google Scholar 

  106. Hüttermann, A., Mai, C., & Kharazipour, A. (2001). Modification of lignin for the production of new compounded materials. Applied Microbiology and Biotechnology, 55(4), 387–394.

    Article  PubMed  Google Scholar 

  107. Lund, M., & Ragauskas, A. (2001). Enzymatic modification of kraft lignin through oxidative coupling with water-soluble phenols. Applied Microbiology and Biotechnology, 55(6), 699–703.

    Article  CAS  PubMed  Google Scholar 

  108. Valls, C., & Roncero, M. B. (2009). Using both xylanase and laccase enzymes for pulp bleaching. Bioresource Technology, 100(6), 2032–2039.

    Article  CAS  PubMed  Google Scholar 

  109. Virk, A. P., Puri, M., Gupta, V., Capalash, N., & Sharma, P. (2013). Combined enzymatic and physical deinking methodology for efficient eco-friendly recycling of old newsprint. PLoS One, 8(8), e72346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Yang, J., Wang, Z., Lin, Y., et al. (2017). Immobilized Cerrena sp. laccase: Preparation, thermal inactivation, and operational stability in malachite green decolorization. Scientific Reports, 7, 16429. https://doi.org/10.1038/s41598-017-16771-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Xu, F. (1999), Laccase, In Flickinger (M.C. and Drew, S.W. eds), Encyclopedia of bioprocess technology: Fermentation, biocatalysis Bioseparation, John Wiley and Sons Inc, New York, pp. 1545–1554.

  112. Han, M. J., Park, H. T., & Song, H. G. (2004). Degradation of phenanthrene by Trametes versicolor and its laccase. Journal of Microbiology, 42(2), 94–98.

    CAS  Google Scholar 

  113. Tanaka, T., Tamura, T., Ishizaki, Y., Kawasaki, A., Kawase, T., Teraguchi, M., & Taniguchi, M. (2009). Enzymatic treatment of estrogens and estrogen glucuronide. Journal of Environmental Sciences, 21(6), 731–735.

    Article  CAS  Google Scholar 

  114. Nyanhongo, G. S., Couto, S. R., & Guebitz, G. M. (2006). Coupling of 2,4,6-trinitrotoluene (TNT) metabolites onto humic monomers by a new laccase from Trametes modesta. Chemosphere, 64(3), 359–370.

    Article  CAS  PubMed  Google Scholar 

  115. Mate, D. M., & Alcalde, M. (2017). Laccase: A multi-purpose biocatalyst at the forefront of biotechnology. Microbial Biotechnology, 10(6), 1457–1467.

    Article  CAS  PubMed  Google Scholar 

  116. Kudanga, T., & Le Roes-Hill, M. (2014). Laccase applications in biofuels production: Current status and future prospects. Applied Microbiology and Biotechnology, 98(15), 6525–6542.

    Article  CAS  PubMed  Google Scholar 

  117. Fang, Z., Liu, X., Chen, L., Shen, Y., Zhang, X., Fang, W., & Xiao, Y. (2015). Identification of a laccase Glac15 from Ganoderma lucidum 77002 and its application in bioethanol production. Biotechnology for Biofuels, 8(1), 1–12.

    Article  CAS  Google Scholar 

  118. Golz-Berner, K., Walzel, B., Zastrow, L. and Doucet, O. (2004). Cosmetic or dermatological preparation with skin-lightening proteins. WO2004017931.

  119. Morel, O. J., & Christie, R. M. (2011). Current trends in the chemistry of permanent hair dyeing. Chemical Reviews, 111(4), 2537–2561.

    Article  CAS  PubMed  Google Scholar 

  120. Saito, K. O., Ikeda, R., Endo, K., Tsujino, Y., Takagi, M., & Tamiya, E. (2012). Isolation of a novel alkaline-induced laccase from Flammulina velutipes and its application for hair coloring. Journal of Bioscience and Bioengineering, 113(5), 575–579.

    Article  CAS  Google Scholar 

  121. Chen, C. Y., Huang, Y. C., Wei, C. M., Meng, M., Liu, W. H., & Yang, C. H. (2013). Properties of the newly isolated extracellular thermo-alkali-stable laccase from thermophilic actinomycetes, Thermobifida fusca and its application in dye intermediates oxidation. AMB Express, 3(1), 1–9.

    Article  CAS  Google Scholar 

  122. Di Fusco, M., Tortolini, C., Deriu, D., & Mazzei, F. (2010). Laccase-based biosensor for the determination of polyphenol index in wine. Talanta, 81(1–2), 235–240.

    Article  PubMed  CAS  Google Scholar 

  123. Milligan, C., & Ghindilis, A. (2002). Laccase based sandwich scheme immunosensor employing mediatorless electrocatalysis. An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 14(6), 415–419.

    CAS  Google Scholar 

  124. Falk, M., Alcalde, M., Bartlett, P. N., De Lacey, A. L., Gorton, L., Gutierrez-Sanchez, C., & Shleev, S. (2014). Self-powered wireless carbohydrate/oxygen sensitive biodevice based on radio signal transmission. PloS One, 9(10), e109104.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Arora, D. S., & Sharma, R. K. (2010). Ligninolytic fungal laccases and their biotechnological applications. Applied Biochemistry and Biotechnology, 160(6), 1760–1788.

    Article  CAS  Google Scholar 

  126. Burton, S. G. (2003). Laccases and phenol oxidases in organic synthesis-a review. Current Organic Chemistry, 7(13), 1317–1331.

    Article  CAS  Google Scholar 

  127. Wang, H. X., & Ng, T. B. (2004). A novel laccase with fair thermostability from the edible wild mushroom (Albatrelladispansus). Biochemical and Biophysical Research Communications, 319(2), 381–385.

    Article  CAS  PubMed  Google Scholar 

  128. Roggen, E.L., S. Ernst, A. Svendsen, E.P. Friis and C. Von Der Osten. 2001. WO2001083559 A2.

Download references

Funding

This work was supported by grant no. 94/PAS from the Pakistan Academy of Science, Islamabad, Pakistan. Moreover, this work is carried out with the help of prestigious material of the libraries and special thanks to the Institute of Industrial Biotechnology, Government College University, Lahore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatima Akram.

Ethics declarations

Ethical Statement

We assure the integrity and quality of our research work. It is also stated that there is no plagiarism in this work and all points taken from other authors are well cited in the text. This study is completely independent and impartial.

Research Involving Human Participants and/or Animals

N/A. This research did not involve human participants and/or animals.

Informed Consent

N/A. This research did not involve human participants.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akram, F., Ashraf, S., Haq, I.u. et al. Eminent Industrial and Biotechnological Applications of Laccases from Bacterial Source: a Current Overview. Appl Biochem Biotechnol 194, 2336–2356 (2022). https://doi.org/10.1007/s12010-021-03781-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03781-9

Keywords

Navigation