Skip to main content

Advertisement

Log in

Improvement of Sugarcane Stillage (Vinasse) Anaerobic Digestion with Cheese Whey as its Co-substrate: Achieving High Methane Productivity and Yield

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This study investigated methane production in an anaerobic sequencing batch biofilm reactor (AnSBBR) by co-digesting sugarcane vinasse and cheese whey. The assessment was based on the influence of feed strategy, interaction between cycle time and influent concentration, applied volumetric organic load (OLRA), and temperature over system stability and performance. The system showed flexibility with regard to the feed strategy, but the reduction of cycle time and influent concentration, at the same OLRA, resulted in lower methane productivity. Increasing organic load, up to the value of 15.27 gCOD L−1 day−1, favored the process, increasing methane yield and productivity. Temperature reduction from 30 to 25 °C resulted in worse performance, although increasing it to 35 °C provided similar results to 30 °C. The best results were achieved at an OLRA of 15.27 gCOD L−1 day−1, cycle time of 8 h, fed-batch operation, and temperature of 30 °C. The system achieved soluble COD removal efficiency of 89%, methane productivity of 208.5 molCH4 m−3 day−1 and yield of 15.76 mmolCH4 gCOD−1. The kinetic model fit indicated methanogenesis preference for the hydrogenotrophic route. At the industrial scale estimative, considering a scenario with a sugarcane ethanol plant with ethanol production of 150,896 m3 year−1, it was estimated energy production of 25,544 MWh month−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Pant, D., & Adholeya, A. (2007). Biological approaches for treatment of distillery wastewater: a review. Bioresource Technology., 98(12), 2321–2334. https://doi.org/10.1016/j.biortech.2006.09.027.

    Article  CAS  PubMed  Google Scholar 

  2. Mohana, S., Acharya, B. K., & Madamwar, D. (2009). Distillery spent wash: treatment technologies and potential applications. Journal of Hazardous Materials., 163(1), 12–25. https://doi.org/10.1016/j.jhazmat.2008.06.079.

    Article  CAS  PubMed  Google Scholar 

  3. Wilkie, A. C., Riedesel, K. J., & Owens, J. M. (2000). Stillage characterization and anaerobic treatment of ethanol stillage from conventional and cellulosic feedstocks. Biomass and Bioenergy, 19(2), 63–102. https://doi.org/10.1016/S0961-9534(00)00017-9.

    Article  CAS  Google Scholar 

  4. España-Gamboa, E., Mijangos-Cortes, J., Barahona-Perez, L., Dominguez-Maldonado, J., Hernández-Zarate, G., & Alzate-Gaviria, L. (2011). Vinasses: characterization and treatments. Waste Management and Research, 29(12), 1235–1250. https://doi.org/10.1177/0734242X10387313.

    Article  CAS  PubMed  Google Scholar 

  5. Fuess, L. T., Garcia, M. L., & Zaiat, M. (2018). Seasonal characterization of sugarcane vinasse: assessing environmental impacts from fertirrigation and the bioenergy recovery potential through biodigestion. Science of the Total Environment, 634, 29–40. https://doi.org/10.1016/j.scitotenv.2018.03.326.

    Article  CAS  PubMed  Google Scholar 

  6. Santos, S. C., Ferreira Rosa, P. R., Sakamoto, I. K., Amâncio Varesche, M. B., & Silva, E. L. (2014). Continuous thermophilic hydrogen production and microbial community analysis from anaerobic digestion of diluted sugar cane stillage. International Journal of Hydrogen Energy, 39(17), 9000–9011. https://doi.org/10.1016/j.ijhydene.2014.03.241.

    Article  CAS  Google Scholar 

  7. Janke, L., Leite, A. F., Batista, K., Silva, W., Nikolausz, M., Nelles, M., & Stinner, W. (2016). Enhancing biogas production from vinasse in sugarcane biorefineries: effects of urea and trace elements supplementation on process performance and stability. Bioresource Technology., 217, 10–20. https://doi.org/10.1016/j.biortech.2016.01.110.

    Article  CAS  PubMed  Google Scholar 

  8. Fuess, L. T., & Garcia, M. L. (2014). Implications of stillage land disposal: a critical review on the impacts of fertigation. Journal of Environmental Management, 145, 210–229. https://doi.org/10.1016/j.jenvman.2014.07.003.

    Article  CAS  PubMed  Google Scholar 

  9. Mata-Alvarez, J., Macé, S., & Llabrés, P. (2000). Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresource Technology, 74(1), 3–16. https://doi.org/10.1016/S0960-8524(00)00023-7.

    Article  CAS  Google Scholar 

  10. Shah, F. A., Mahmood, Q., Rashid, N., Pervez, A., Raja, I. A., & Shah, M. M. (2015). Co-digestion, pretreatment and digester design for enhanced methanogenesis. Renewable and Sustainable Energy Reviews., 42, 627–642. https://doi.org/10.1016/j.rser.2014.10.053.

    Article  CAS  Google Scholar 

  11. Hartmann, H., Angelidaki, I., & Ahring, B. K. (2002). Co-digestion of the organic fraction of municipal waste with other waste types. In Biomethanization of the organic fraction of municipal solid wastes (pp. 181–200). London: IWA Publishing.

    Google Scholar 

  12. López González, L. M., Pereda Reyes, I., & Romero Romero, O. (2017). Anaerobic co-digestion of sugarcane press mud with vinasse on methane yield. Waste Management, 68, 139–145. https://doi.org/10.1016/j.wasman.2017.07.016.

    Article  CAS  PubMed  Google Scholar 

  13. Albanez, R., Lovato, G., Zaiat, M., Ratusznei, S. M., & Rodrigues, J. A. D. (2016). Optimization, metabolic pathways modeling and scale-up estimative of an AnSBBR applied to biohydrogen production by co-digestion of vinasse and molasses. International Journal of Hydrogen Energy, 41(45), 20473–20484. https://doi.org/10.1016/j.ijhydene.2016.08.145.

    Article  CAS  Google Scholar 

  14. Volpini, V., Lovato, G., Albanez, R., Ratusznei, S. M., & Rodrigues, J. A. D. (2018). Biomethane generation in an AnSBBR treating effluent from the biohydrogen production from vinasse: optimization, metabolic pathways modeling and scale-up estimation. Renewable Energy, 116(Pt A), 288–198. https://doi.org/10.1016/j.renene.2017.09.004.

    Article  CAS  Google Scholar 

  15. Lovato, G., Albanez, R., Triveloni, M., Ratusznei, S. M., & Rodrigues, J. A. D. (2019). Methane production by co-digesting vinasse and whey in an AnSBBR: effect of mixture ratio and feed strategy. Applied Biochemistry and Biotechnology, 187(1), 28–46. https://doi.org/10.1007/s12010-018-2802-7.

    Article  CAS  PubMed  Google Scholar 

  16. Gelegenis, J., Georgakakis, D., Angelidaki, I., & Mavris, V. (2007). Optimization of biogas production by co-digesting whey with diluted poultry manure. Renewable Energy, 32(13), 2147–2160. https://doi.org/10.1016/j.renene.2006.11.015.

    Article  CAS  Google Scholar 

  17. Rico, C., Muñoz, N., Fernández, J., & Rico, J. L. (2015). High-load anaerobic co-digestion of cheese whey and liquid fraction of dairy manure in a one-stage UASB process: limits in co-substrates ratio and organic loading rate. Chemical Engineering Journal, 262, 794–802. https://doi.org/10.1016/j.cej.2014.10.050.

    Article  CAS  Google Scholar 

  18. Comino, E., Riggio, V. A., & Rosso, M. (2012). Biogas production by anaerobic co-digestion of cattle slurry and cheese whey. Bioresource Technology, 114(Supplement C, 46–53. https://doi.org/10.1016/j.biortech.2012.02.090.

    Article  CAS  PubMed  Google Scholar 

  19. Bertin, L., Grilli, S., Spagni, A., & Fava, F. (2013). Innovative two-stage anaerobic process for effective codigestion of cheese whey and cattle manure. Bioresource Technology, 128(Supplement C, 779–783. https://doi.org/10.1016/j.biortech.2012.10.118.

    Article  CAS  PubMed  Google Scholar 

  20. Lovato, G., Ratusznei, S. M., Rodrigues, J. A. D., & Zaiat, M. (2016). Co-digestion of whey with glycerin in an AnSBBR for biomethane production. Applied Biochemistry and Biotechnology, 178(1), 126–143. https://doi.org/10.1007/s12010-015-1863-0.

    Article  CAS  PubMed  Google Scholar 

  21. Lovato, G., Albanez, R., Albuquerque, J. N., Cola, P., Celestino, R. S., Vogel, S. E., et al. (2017). Novel insights into the co-digestion of whey with glycerin in an ansbbr: influent composition and concentration, cycle length and feed strategy effect title. In J. A. Daniels (Ed.), Advances in Environmental Research - Volume 58 (1st ed., pp. 161–182). Hauppauge: Nova Science Publishers. Retrieved from https://www.novapublishers.com/catalog/product_info.php?products_id=63189. Accessed 25 May 2018.

    Google Scholar 

  22. Gomez-Romero, J., Gonzalez-Garcia, A., Chairez, I., Torres, L., & García-Peña, E. I. (2014). Selective adaptation of an anaerobic microbial community: biohydrogen production by co-digestion of cheese whey and vegetables fruit waste. International Journal of Hydrogen Energy, 39(24), 12541–12550. https://doi.org/10.1016/j.ijhydene.2014.06.050.

    Article  CAS  Google Scholar 

  23. Martinez-Garcia, G., Johnson, A. C., Bachmann, R. T., Williams, C. J., Burgoyne, A., & Edyvean, R. G. J. (2007). Two-stage biological treatment of olive mill wastewater with whey as co-substrate. International Biodeterioration & Biodegradation, 59(4), 273–282. https://doi.org/10.1016/j.ibiod.2007.03.008.

    Article  CAS  Google Scholar 

  24. Azbar, N., Keskin, T., & Yuruyen, A. (2008). Enhancement of biogas production from olive mill effluent (OME) by co-digestion. Biomass and Bioenergy, 32(12), 1195–1201. https://doi.org/10.1016/j.biombioe.2008.03.002.

    Article  CAS  Google Scholar 

  25. Ergüder, T., Tezel, U., Güven, E., & Demirer, G. (2001). Anaerobic biotransformation and methane generation potential of cheese whey in batch and UASB reactors. Waste Management, 21(7), 643–650. https://doi.org/10.1016/S0956-053X(00)00114-8.

    Article  PubMed  Google Scholar 

  26. Prazeres, A. R., Carvalho, F., & Rivas, J. (2012). Cheese whey management: a review. Journal of Environmental Management, 110(Supplement C, 48–68. https://doi.org/10.1016/j.jenvman.2012.05.018.

    Article  CAS  PubMed  Google Scholar 

  27. Zaiat, M., Rodrigues, J. A. D., Ratusznei, S. M., de Camargo, E. F. M., & Borzani, W. (2001). Anaerobic sequencing batch reactors for wastewater treatment: a developing technology. Applied Microbiology and Biotechnology, 55(1), 29–35. https://doi.org/10.1007/s002530000475.

    Article  CAS  PubMed  Google Scholar 

  28. Albanez, R., Chiaranda, B. C., Ferreira, R. G., França, A. L. P., Honório, C. D., Rodrigues, J. A. D., Ratusznei, S. M., & Zaiat, M. (2016). Anaerobic biological treatment of vinasse for environmental compliance and methane production. Applied Biochemistry and Biotechnology, 178(1), 21–43. https://doi.org/10.1007/s12010-015-1856-z.

    Article  CAS  PubMed  Google Scholar 

  29. Almeida, W. A., Ratusznei, S. M., Zaiat, M., & Rodrigues, J. A. D. (2017). AnSBBR applied to biomethane production for vinasse treatment: effects of organic loading, feed strategy and temperature. Brazilian Journal of Chemical Engineering, 34(3), 759–773. https://doi.org/10.1590/0104-6632.20170343s20150584.

    Article  CAS  Google Scholar 

  30. Bezerra, R. A., Rodrigues, J. A. D., Ratusznei, S. M., Zaiat, M., & Foresti, E. (2009). Effects of feed time, organic loading and shock loads in anaerobic whey treatment by an AnSBBR with circulation. Applied Biochemistry and Biotechnology, 157(2), 140–158. https://doi.org/10.1007/s12010-008-8371-4.

    Article  CAS  PubMed  Google Scholar 

  31. Ramos, A. C. T., Ratusznei, S. M., Rodrigues, J. A. D., & Zaiat, M. (2003). Mass transfer improvement of a fixed-bed anaerobic sequencing batch reactor with liquid-phase circulation. Interciencia, 28(4), 214–219.

    Google Scholar 

  32. Zaiat, M., Cabral, A. K. A., & Foresti, E. (1994). Reator anaeróbio horizontal de leito fixo para tratamento de águas residuárias: concepção e avaliação preliminar de desempenho. Revista Brasileira de Engenharia-Caderno de Engenharia Química, 11(2), 33–42.

    Google Scholar 

  33. Döll, M. M. R., & Foresti, E. (2010). Efeito do bicarbonato de sódio no tratamento de vinhaça em AnSBBR operado a 55 e 35°C. Engenharia Sanitaria e Ambiental, 15(3), 275–282.

    Article  Google Scholar 

  34. Siqueira, L. M., Damiano, E. S. G., & Silva, E. L. (2013). Influence of organic loading rate on the anaerobic treatment of sugarcane vinasse and biogás production in fluidized bed reactor. Journal of Environmental Science and Health, Part A, 48(13), 1707–1716. https://doi.org/10.1080/10934529.2013.815535.

    Article  CAS  Google Scholar 

  35. Damasceno, L. H. S., Rodrigues, J. A. D., Ratusznei, S. M., Zaiat, M., & Foresti, E. (2007). Effects of feeding time and organic loading in an anaerobic sequencing batch biofilm reactor (ASBBR) treating diluted whey. Journal of Environmental Management, 85(4), 927–935. https://doi.org/10.1016/j.jenvman.2006.11.001.

    Article  CAS  PubMed  Google Scholar 

  36. Mockaitis, G., Ratusznei, S. M., Rodrigues, J. A. D., Zaiat, M., & Foresti, E. (2006). Anaerobic whey treatment by a stirred sequencing batch reactor (ASBR): effects of organic loading and supplemented alkalinity. Journal of Environmental Management, 79(2), 198–206. https://doi.org/10.1016/j.jenvman.2005.07.001.

    Article  CAS  PubMed  Google Scholar 

  37. Conab. (2018). Acompanhamento da safra brasileira. In Cana-de-açúcar.

    Google Scholar 

  38. FAS-USDA. (2017). Dairy, milk, fluid, dairy, cheese, dairy, butter, dairy, dry whole Milk powder annual dairy report |Brasilia|Brazil|11/29/2017.

    Google Scholar 

  39. Carvalho, F., Prazeres, A. R., & Rivas, J. (2013). Cheese whey wastewater: characterization and treatment. Science of the Total Environment., 445-446, 385–396. https://doi.org/10.1016/j.scitotenv.2012.12.038.

    Article  CAS  PubMed  Google Scholar 

  40. APHA/AWWA/WEF. (2012). Standard methods for the examination of water and wastewater (22nd ed.). Washington DC: American Public Health Association.

  41. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350–356. https://doi.org/10.1021/ac60111a017.

    Article  CAS  Google Scholar 

  42. Ripley, L. E., Boyle, W. C., & Converse, J. C. (1986). Improved alkalimetric monitoring for anaerobic digestion of high-strength wastes. Water, 58(370), 406–411. https://doi.org/10.1016/S0262-1762(99)80122-9.

    Article  CAS  Google Scholar 

  43. Harper, S. R., & Pohland, F. G. (1986). Recent developments in hydrogen management during anaerobic biological wastewater treatment. Biotechnology and Bioengineering, 28(4), 585–602. https://doi.org/10.1002/bit.260280416.

    Article  CAS  PubMed  Google Scholar 

  44. Perry, R. H., Green, D. W., & Maloney, J. O. (1997). Perry’s chemical engineers’ handbook. (., Ed.) (7 aed.). New York: McGraw-Hill.

    Google Scholar 

  45. Novaes, L. F., Borges, L. O., Rodrigues, J. A. D., Ratusznei, S. M., Zaiat, M., & Foresti, E. (2010). Effect of fill time on the performance of pilot-scale ASBR and AnSBBR applied to sanitary wastewater treatment. Applied Biochemistry and Biotechnology, 162(3), 885–899. https://doi.org/10.1007/s12010-009-8803-9.

    Article  CAS  PubMed  Google Scholar 

  46. Lovato, G., Bezerra, R. A., Rodrigues, J. A. D., Ratusznei, S. M., & Zaiat, M. (2012). Effect of feed strategy on methane production and performance of an AnSBBR treating effluent from biodiesel production. Applied Biochemistry and Biotechnology, 166(8), 2007–2029. https://doi.org/10.1007/s12010-012-9627-6.

    Article  CAS  PubMed  Google Scholar 

  47. Speece, R. E. (1996). Anaerobic biotechnology for industrial wastewaters. Nashville, Tenn: Archae Press.

    Google Scholar 

  48. Hill, D. T., Cobb, S. A., & Bolte, J. P. (1987). Using volatile fatty acid relationships to predict anaerobic digester failure. Transactions of the ASAE, 30(2), 496–501. https://doi.org/10.13031/2013.31977.

    Article  CAS  Google Scholar 

  49. Marchaim, U., & Krause, C. (1993). Propionic to acetic acid ratios in overloaded anaerobic digestion. Bioresource Technology, 43(3), 195–203. https://doi.org/10.1016/0960-8524(93)90031-6.

    Article  CAS  Google Scholar 

  50. Bagley, D. M., & Brodkorb, T. S. (1999). Modeling microbial kinetics in an anaerobic sequencing batch reactor: model development and experimental validation. Water Environment Research, 71(7), 1320–1332.

    Article  CAS  Google Scholar 

  51. Silva, R. C., Rodrigues, J. A. D., Ratusznei, S. M., & Zaiat, M. (2013). Anaerobic treatment of industrial biodiesel wastewater by an ASBR for methane production. Applied Biochemistry and Biotechnology, 170(1), 105–118. https://doi.org/10.1007/s12010-013-0171-9.

    Article  CAS  PubMed  Google Scholar 

  52. Siman, R. R., Borges, A. C., Ratusznei, S. M., Rodrigues, J. A. D., Zaiat, M., Foresti, E., & Borzani, W. (2004). Influence of organic loading on an anaerobic sequencing biofilm batch reactor (ASBBR) as a function of cycle period and wastewater concentration. Journal of Environmental Management, 72(4), 241–247. https://doi.org/10.1016/j.jenvman.2004.05.004.

    Article  PubMed  Google Scholar 

  53. Siqueira, T. S., Albuquerque, J. N., Ratusznei, S. M., & Rodrigues, J. A. D. (2018). Biomethane production from whey treatment in an AnSBBR at thermophilic condition. In J. Castillo (Ed.), Bioenergy: Prospects, Applications and Future Directions (1st ed., pp. 13–41). Hauppauge, NY: Nova Science Publishers.

    Google Scholar 

  54. Fuess, L. T., Kiyuna, L. S. M., Ferraz, A. D. N., Persinoti, G. F., Squina, F. M., Garcia, M. L., & Zaiat, M. (2017). Thermophilic two-phase anaerobic digestion using an innovative fixed-bed reactor for enhanced organic matter removal and bioenergy recovery from sugarcane vinasse. Applied Energy, 189, 480–491. https://doi.org/10.1016/j.apenergy.2016.12.071.

    Article  CAS  Google Scholar 

  55. Kalyuzhnyi, S. V., Martinez, E. P., & Martinez, J. R. (1997). Anaerobic treatment of high-strength cheese-whey wastewaters in laboratory and pilot UASB-reactors. Bioresource Technology, 60(1), 59–65. https://doi.org/10.1016/S0960-8524(96)00176-9.

    Article  CAS  Google Scholar 

  56. Bergland, W. H., Dinamarca, C., & Bakke, R. (2015). Temperature effects in anaerobic digestion modeling. In Proceedings of the 56th Conference on Simulation and Modelling (SIMS 56), October, 7–9, 2015, Linköping University, Sweden (pp. 261–269). Linköping: Linköping University Electronic Press. https://doi.org/10.3384/ecp15119261.

    Chapter  Google Scholar 

  57. Agibert, S. A. C., Moreira, M. B., Ratusznei, S. M., Rodrigues, J. A. D., Zaiat, M., & Foresti, E. (2007). Influence of temperature on performance of an anaerobic sequencing biofilm batch reactor with circulation applied to treatment of low-strength wastewater. Applied Biochemistry and Biotechnology, 136(2), 193–206. https://doi.org/10.1007/BF02686017.

    Article  CAS  PubMed  Google Scholar 

  58. Bergamo, C. M., Di Monaco, R., Ratusznei, S. M., Rodrigues, J. A. D., Zaiat, M., & Foresti, E. (2009). Effects of temperature at different organic loading levels on the performance of a fluidized-bed anaerobic sequencing batch bioreactor. Chemical Engineering and Processing: Process Intensification, 48(3), 789–796. https://doi.org/10.1016/j.cep.2008.10.003.

    Article  CAS  Google Scholar 

  59. de Barros, V. G., Duda, R. M., & Oliveira, R. A. d. (2016). Biomethane production from vinasse in upflow anaerobic sludge blanket reactors inoculated with granular sludge. Brazilian Journal of Microbiology, 47(3), 628–639. https://doi.org/10.1016/j.bjm.2016.04.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zinder, S. H., & Koch, M. (1984). Non-aceticlastic methanogenesis from acetate: acetate oxidation by a thermophilic syntrophic coculture. Archives of Microbiology, 138(3), 263–272. https://doi.org/10.1007/BF00402133.

    Article  CAS  Google Scholar 

  61. Karakashev, D., Batstone, D. J., Trably, E., & Angelidaki, I. (2006). Acetate oxidation is the dominant methanogenic pathway from acetate in the absence of methanosaetaceae. Applied and Environmental Microbiology, 72(7), 5138–5141. https://doi.org/10.1128/AEM.00489-06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. van Lier, J. B. (2008). High-rate anaerobic wastewater treatment: diversifying from end-of-the-pipe treatment to resource-oriented conversion techniques. Water Science and Technology, 57(8), 1137–1148. https://doi.org/10.2166/wst.2008.040.

    Article  CAS  PubMed  Google Scholar 

  63. EPE. (2017). Anuário Estatístico de Energia Elétrica (p. 2017).

    Google Scholar 

  64. ANP. (2018). Anuário Estatístico do Peróleo. In Gás Natural e Biocombustíveis (p. 2018).

    Google Scholar 

Download references

Funding

This work was supported by the São Paulo Research Foundation (FAPESP: #2015/06246-7), the National Council for Scientific and Technological Development (CNPq: #443181/2016-0), and the Coordination for the Improvement of Higher Education Personnel (CAPES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José A. D. Rodrigues.

Ethics declarations

Conflict of Interest

The authors indicate no potential conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sousa, S.P., Lovato, G., Albanez, R. et al. Improvement of Sugarcane Stillage (Vinasse) Anaerobic Digestion with Cheese Whey as its Co-substrate: Achieving High Methane Productivity and Yield. Appl Biochem Biotechnol 189, 987–1006 (2019). https://doi.org/10.1007/s12010-019-03056-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03056-4

Keywords

Navigation