Skip to main content
Log in

Biochemical Characterization of Thermostable and Detergent-Tolerant β-Agarase, PdAgaC, from Persicobacter sp. CCB-QB2

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Persicobacter sp. CCB-QB2 belonging to the family Flammeovirga is an agarolytic bacterium and exhibits a diauxic growth in the presence of tryptone and agarose. A glycoside hydrolase (GH) 16 β-agarase, PdAgaC, was identified in the genome of the bacterium and was highly expressed during the second growth phase, indicating the agarase may play an important role in the diauxic growth. In this study, the catalytic domain of PdAgaC (PdAgaCgh) was cloned and characterized. PdAgaCgh showed thermostability at 50 °C and tolerance towards several detergents. In addition, the activity of PdAgaCgh after incubation with 0.1% of SDS and Triton X-100 increased approximately 1.2-fold. On the other hand, PdAgaCgh was sensitive to Fe2+, Ni2+, and Cu2+. The Km and Vmax of PdAgaCgh were 5.15 mg/ml and 2.9 × 103 U/mg, respectively. Interestingly, although the major hydrolytic product was neoagarobiose (NA2), monomeric sugar was also detected by thin-layer chromatographic analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Araki, C. (1956). Structure of the agarose constituent of agar-agar. Bulletin of the Chemical Society of Japan, 29(4), 543–544.

    Article  CAS  Google Scholar 

  2. Cui, F., Dong, S., Shi, X., Zhao, X., & Zhang, X.-H. (2014). Overexpression and characterization of a novel thermostable β-agarase YM01-3, from marine bacterium Catenovulum agarivorans YM01T. Marine Drugs, 12(5), 2731–2747.

    Article  CAS  Google Scholar 

  3. Martin, M., Portetelle, D., Michel, G., & Vandenbol, M. (2014). Microorganisms living on macroalgae: diversity, interactions, and biotechnological applications. Applied Microbiology and Biotechnology, 98(7), 2917–2935.

    Article  CAS  Google Scholar 

  4. Fu, X. T., Lin, H., & Kim, S. M. (2008). Purification and characterization of a novel β-agarase, AgaA34, from Agarivorans albus YKW-34. Applied Microbiology and Biotechnolgy, 78(2), 265–273.

    Article  CAS  Google Scholar 

  5. Lin, B., Lu, G., Zheng, Y., Xie, W., Li, S., & Hu, Z. (2012). Gene cloning, expression and characterization of a neoagarotetraose-producing β-agarase from the marine bacterium Agarivorans sp. HZ105. World Journal Microbiology and Biotechnology, 28(4), 1691–1697.

    Article  CAS  Google Scholar 

  6. Liang, Y., Ma, X., Zhang, L., Li, F., Liu, Z., & Mao, X. (2017). Biochemical characterization and substrate degradation mode of a novel exotype β-agarase from Agarivorans gilvus WH0801. Journal of Agricultural and Food Chemistry, 65(36), 7982–7988.

    Article  CAS  Google Scholar 

  7. Potin, P., Richard, C., Rochas, C., & Kloareg, B. (1993). Purification and characterization of the α-agarase from Alteromonas agarlyticus (Cataldi) comb. nov., strain GJ1B. European Journal of Biochemistry, 214(2), 599–607.

    Article  CAS  Google Scholar 

  8. Chi, W.-J., Park, D. Y., Seo, Y. B., Chang, Y. K., Lee, S.-Y., & Hong, S.-K. (2014a). Cloning, expression, and biochemical characterization of a novel GH16 β-agarase AgaG1 from Alteromonas sp. GNUM-1. Applied Microbiology and Biotechnology, 98(10), 4545–4555.

    Article  CAS  Google Scholar 

  9. An, K., Shi, X., Cui, F., Cheng, J., Liu, N., Zhao, X., & Zhang, X.-H. (2018). Characterization and overexpression of a glycosyl hydrolase family 16 beta-agarase YM01-1 from marine bacterium Catenovulum agarivorans YM01T. Protein Expression and Purification, 143, 1–8.

    Article  CAS  Google Scholar 

  10. Ramos, K. R. M., Valdehuesa, K. N. G., Nisola, G. M., Lee, W.-K., & Chung, W.-J. (2018). Identification and characterization of a thermostable endolytic β-agarase Aga2 from a newly isolated marine agarolytic bacteria Cellulophaga omnivescoria W5C. New Biotechnology, 40(Pt B), 261–267.

    Article  CAS  Google Scholar 

  11. Li, G., Sun, M., Wu, J., Ye, M., Ge, X., Wei, W., Li, H., & Hu, F. (2015). Identification and biochemical characterization of a novel endo-type β-agarase AgaW from Cohnella sp. strain LGH. Applied Microbiology and Biotechnology, 99(23), 10019–10029.

    Article  CAS  Google Scholar 

  12. Yang, J.-I., Chen, L.-C., Shih, Y.-Y., Hsieh, C., Chen, C.-Y., Chen, W.-M., & Chen, C.-C. (2011). Cloning and characterization of β-agarase AgaYT from Flammeovirga yaeyamensis strain YT. Journal of Bioscience and Bioengineering, 112(3), 225–232.

    Article  CAS  Google Scholar 

  13. Hou, Y., Chen, X., Chan, Z., & Zeng, R. (2015). Expression and characterization of a thermostable and pH-stable β-agarase encoded by a new gene from Flammeovirga pacifica WPAGA1. Process Biochemistry, 50(7), 1068–1075.

    Article  CAS  Google Scholar 

  14. Dong, Q., Ruan, L., & Shi, H. (2016). A β-agarase with high pH stability from Flammeovirga sp. SJP92. Carbohydrate Research, 432, 1–8.

    Article  CAS  Google Scholar 

  15. Ohta, Y., Hatada, Y., Nogi, Y., Li, Z., Ito, S., & Horikoshi, K. (2004). Cloning, expression, and characterization of a glycoside hydrolase family 86 β-agarase from a deep-sea Microbulbifer-like isolate. Applied Microbiology and Biotechnology, 66(3), 266–275.

    Article  CAS  Google Scholar 

  16. Miyazaki, M., Nogi, Y., Ohat, Y., Hatada, Y., Fujiwara, Y., Ito, S., & Horikoshi, K. (2008). Microbulbifer agarilyticus sp. nov. and Microbulbifer thermotolerans sp. nov., agar-degrading bacteria isolated from deep-sea sediment. International Journal of Systematic and Evolutionary Mcrobiology, 58(5), 1128–1133.

    Article  CAS  Google Scholar 

  17. Jonnadula, R., & Ghadi, S. C. (2011). Purification and characterization of β-agarase from seaweed decomposing bacterium Microbulbifer sp. strain CMC-5. Biotechnology and Bioprocess Engineering, 16(3), 513–519.

    Article  CAS  Google Scholar 

  18. Su, Q., Jin, T., Yu, Y., Yang, M., Mou, H. and Li, L. (2017) Extracellular expression of a novel β-agarase from Microbulbifer sp. Q7, isolated from the gut of sea cucumber. AMB Express, 7, 220.

  19. Naganuma, T., Coury, D. A., Polne-Fuller, M., Gibor, A., & Horikoshi, K. (1993). Characterization of agarolytic Microscilla isolates and their extracellular agarases. Systematic and Applied Microbiology, 16(2), 183–190.

    Article  CAS  Google Scholar 

  20. Zhong, Z., Toukdarian, A., Helinski, D., Knauf, V., Sykes, S., Wilkinson, J. E., O'Bryne, C., Shea, T., DeLoughery, C., & Caspi, R. (2001). Sequence analysis of a 101-kilobase plasmid required for agar degradation by a Microscilla isolate. Applied and Environmental Microbiology, 67(11), 5771–5779.

    Article  CAS  Google Scholar 

  21. Vera, J., Alvarez, R., Murano, E., Slebe, J. C., & Leon, O. (1998). Identification of a marine agarolytic Pseudoalteromonas isolate and characterization of its extracellular agarase. Applied and Environmental Microbiology, 64(11), 4378–4383.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Xavier Chiura, H., & Kita-Tsukamoto, K. (2000). Purification and characterisation of a novel agarase secreted by a marine bacterium, Pseudoalteromonas sp. strain CKT1. Microbes and Environments, 15(1), 11–22.

    Article  Google Scholar 

  23. Lu, X., Chu, Y., Wu, Q., Gu, Y., Han, F., & Yu, W. (2009). Cloning, expression and characterization of a new agarase-encoding gene from marine Pseudoalteromonas sp. Biotechnology Letters, 31(10), 1565–1570.

    Article  CAS  Google Scholar 

  24. Oh, C., Nikapitiya, C., Lee, Y., Whang, I., Kim, S.-J., Kang, D.-H., & Lee, J. (2010). Cloning, purification and biochemical characterization of beta agarase from the marine bacterium Pseudoalteromonas sp. AG4. Journal of Industrial Microbiology & Biotechnology, 37(5), 483–494.

    Article  CAS  Google Scholar 

  25. Chi, W.-J., Park, J.-S., Kang, D.-K., & Hong, S.-K. (2014b). Production and characterization of a novel thermostable extracellular agarase from Pseudoalteromonas hodoensis newly isolated from the west sea of South Korea. Applied Microbiology and Biotechnology, 173(7), 1703–1716.

    CAS  Google Scholar 

  26. Nedashkovskaya, O. I., Suzuki, M., Lee, J.-S., Lee, K. C., Shevchenko, L. S., & Mikhailov, V. V. (2009). Pseudozobellia thermophila gen. nov., sp. nov., a bacterium of the family Flavobacteriaceae, isolated from the green alga Ulva fenestrata. International Journal of Systematic and Evolutionary Microbiology, 59(4), 806–810.

    Article  CAS  Google Scholar 

  27. Ekborg, N. A., Taylor, L. E., Longmire, A. G., Henrissat, B., Weiner, R. M., & Hutcheson, S. W. (2006). Genomic and proteomic analyses of the agarolytic system expressed by Saccharophagus degradans 2-40. Applied and Environmental Microbiology, 72(5), 3396–3405.

    Article  CAS  Google Scholar 

  28. Sugano, Y., Terada, I., Arita, M., Noma, M., & Matsumoto, T. (1993). Purification and characterization of a new agarase from a marine bacterium, Vibrio sp. strain JT0107. Applied and Environmental Microbiology, 59(5), 1549–1554.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang, W.-W., & Sun, L. (2007). Cloning, characterization, and molecular application of a beta-agarase gene from Vibrio sp. strain V134. Applied and Environmental Microbiology, 73(9), 2825–2831.

    Article  CAS  Google Scholar 

  30. Jam, M., Flament, D., Allouch, J., Potin, P., Thion, L., Kloareg, B., Czjzek, M., Helbert, W., Michel, G., & Barbeyron, T. (2005). The endo-beta-agarases AgaA and AgaB from the marine bacterium Zobellia galactanivorans: two paralogue enzymes with different molecular organizations and catalytic behaviours. Biochemical Journal, 385(3), 703–713.

    Article  CAS  Google Scholar 

  31. Kobayashi, R., Takisada, M., Suzuki, T., Kirimura, K., & Usami, S. (1997). Neoagarobiose as a novel moisturizer with whitening effect. Bioscience, Biotechnology, and Biochemistry, 61(1), 162–163.

    Article  CAS  Google Scholar 

  32. Yun, E. J., Lee, S., Kim, J. H., Kim, B. B., Kim, H. T., Lee, S. H., Pelton, J. G., Kang, N. J., Choi, I.-G., & Kim, K. H. (2013). Enzymatic production of 3, 6-anhydro-L-galactose from agarose and its purification and in vitro skin whitening and anti-inflammatory activities. Applied Microbiology and Biotechnology, 97(7), 2961–2970.

    Article  CAS  Google Scholar 

  33. Furusawa, G., Lau, N. S., Suganthi, A. and Amirul, A. A. A. (2017) Agarolytic bacterium Persicobacter sp. CCB-QB2 exhibited a diauxic growth involving galactose utilization pathway. MicrobiologyOpen 6.

  34. Miller, G. L. (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426–428.

    Article  CAS  Google Scholar 

  35. Muramatsu, Y., Takahashi, M., Kaneyasu, M., Iino, T., Suzuki, K.-I., & Nakagawa, Y. (2010). Persicobacter psychrovividus sp. nov., isolated from shellfish, and emended descriptions of the genus Persicobacter and Persicobacter diffluens. International Journal of Systematic and Evolutionary Mcrobiology, 60(8), 1735–1739.

    Article  CAS  Google Scholar 

  36. Han, W., Zhao, S., Liu, H., Wu, Z., Gu, Q., & Li, Y. (2012). Isolation, identification and agarose degradation of a polysaccharide-degrading marine bacterium Persicobacter sp. JZB09. Acta Microbiologica Sinica, 52(6), 776–783.

    CAS  PubMed  Google Scholar 

  37. Kristensen, J. B., Börjesson, J., Bruun, M. H., Tjerneld, F., & Jørgensen, H. (2007). Use of surface active additives in enzymatic hydrolysis of wheat straw lignocellulose. Enzyme and Microbial Technology, 40(4), 888–895.

    Article  CAS  Google Scholar 

  38. Eriksson, T., Börjesson, J., & Tjerneld, F. (2002). Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzyme and Microbial Technology, 31(3), 353–364.

    Article  CAS  Google Scholar 

  39. Park, D. Y., Chi, W.-J., Park, J.-S., Chang, Y.-K., & Hong, S.-K. (2015). Cloning, expression, and biochemical characterization of a GH16 β-agarase AgaH71 from Pseudoalteromonas hodoensis H7. Applied Microbiology and Biotechnology, 175(2), 733–747.

    CAS  Google Scholar 

  40. Rebuffet, E., Groisillier, A., Thompson, A., Jeudy, A., Barbeyron, T., Czjzek, M., & Michel, G. (2011). Discovery and structural characterization of a novel glycosidase family of marine origin. Environmental Microbiology, 13(5), 1253–1270.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

G. Furusawa gratefully acknowledges the post-doctoral fellowships granted by Universiti Sains Malaysia.

Funding

This project was financially supported by the Research University (RU) mangrove project grant (1001/PCCB/870009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Go Furusawa.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest. All authors have contributed to the work, and they have agreed to submit the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hafizah, N.F., Teh, AH. & Furusawa, G. Biochemical Characterization of Thermostable and Detergent-Tolerant β-Agarase, PdAgaC, from Persicobacter sp. CCB-QB2. Appl Biochem Biotechnol 187, 770–781 (2019). https://doi.org/10.1007/s12010-018-2849-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-018-2849-5

Keywords

Navigation