Skip to main content

Advertisement

Log in

Cloning, expression, and biochemical characterization of a novel GH16 β-agarase AgaG1 from Alteromonas sp. GNUM-1

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Alteromonas sp. GNUM-1 is known to degrade agar, the main cell wall component of red macroalgae, for their growth. A putative agarase gene (agaG1) was identified from the mini-library of GNUM-1, when extracellular agarase activity was detected in a bacterial transformant. The nucleotide sequence revealed that AgaG1 had significant homology to GH16 agarases. agaG1 encodes a primary translation product (34.7 kDa) of 301 amino acids, including a 19-amino-acid signal peptide. For intracellular expression, a gene fragment encoding only the mature form (282 amino acids) was cloned into pGEX-5X-1 in Escherichia coli, where AgaG1 was expressed as a fusion protein with GST attached to its N-terminal (GST-AgaG1). GST-AgaG1 purified on a glutathione sepharose column had an apparent molecular weight of 59 kDa on SDS-PAGE, and this weight matched with the estimated molecular weight (58.7 kDa). The agarase activity of the purified protein was confirmed by the zymogram assay. GST-AgaG1 could hydrolyze the artificial chromogenic substrate, p-nitrophenyl-β-d-galactopyranoside but not p-nitrophenyl-α-d-galactopyranoside. The optimum pH and temperature for GST-AgaG1 activity were identified as 7.0 and 40 °C, respectively. GST-AgaG1 was stable up to 40 °C (100 %), and it retained more than 70 % of its initial activity at 45 °C after heat treatment for 30 min. The K m and V max for agarose were 3.74 mg/ml and 23.8 U/mg, respectively. GST-AgaG1 did not require metal ions for its activity. Thin layer chromatography analysis, mass spectrometry, and 13C-nuclear magnetic resonance spectrometry of the GST-AgaG1 hydrolysis products revealed that GST-AgaG1 is an endo-type β-agarase that hydrolyzes agarose and neoagarotetraose into neoagarobiose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allouch J, Jam M, Helbert W, Barbeyron T, Kloareg B, Henrissat B, Czjzek M (2003) The three dimensional structures of two beta agarases. J Biol Chem 278:47171–47180

    Article  CAS  PubMed  Google Scholar 

  • Aoki T, Araki T, Kitamikado M (1990) Purification and characterization of a novel beta-agarase from Vibrio sp. AP-2. Eur J Biochem 187:461–465

    Article  CAS  PubMed  Google Scholar 

  • Araki C (1959) Seaweed polysaccharides. In: Wolfrom ML (ed) Carbohydrate chemistry of substances of biological interest. Pergamon, London, pp 15–30

    Google Scholar 

  • Chi WJ, Chang YK, Hong SK (2012) Agar degradation by microorganisms and agar-degrading enzymes. Appl Microbiol Biotechnol 94:917–930

    Article  CAS  PubMed  Google Scholar 

  • Correc G, Hehemann J-H, Czjzek M, Helbert W (2011) Structural analysis of the degradation products of porphyran digested by Zobellia galactanivorans β-porphyranase A. Carbohydr Polym 83:277–283

    Article  CAS  Google Scholar 

  • Gauthier G, Gauthier M, Christen R (1995) Phylogenetic analysis of the genera Alteromonas, Shewanella, and Moritella using genes coding for small-subunit rRNA sequences and division of the genus Alteromonas into two genera, Alteromonas (emended) and Pseudoalteromonas gen. nov, and proposal of twelve new species combinations. Int J Syst Bacteriol 45:755–761

    Article  CAS  PubMed  Google Scholar 

  • Hassairi I, Ben Amar R, Nonus M, Gupta BB (2001) Production and separation of alpha-agarase from Altermonas agarlyticus strain GJ1B. Bioresour Technol 29:47–51

    Article  Google Scholar 

  • Hayase N, Sogabe T, Itou R, Yamamori N, Sunamori J (2003) Polymer film produced by a marine bacterium. J Biosci Bioeng 95:72–76

    CAS  PubMed  Google Scholar 

  • Hehemann JH, Correc G, Barbeyron T, Helbert W, Czjzek M, Michel G (2010) Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 464:908–912

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Hong SK (2012) Isolation and characterization of an agarase-producing bacterial strain, Alteromonas sp. GNUM-1, from the West Sea, Korea. J Microbiol Biotechnol 23:1621–1628, Erratum (2013) 23:136

    Article  Google Scholar 

  • Kirimura K, Masuda N, Iwasaki Y, Nakagawa H, Kobayashi R, Usai S (1999) Purification and characterization of a novel β-agarase from an alkalophilic bacterium, Alteromonas sp. E-1. J Biosci Bioeng 87:436–441

    Article  CAS  PubMed  Google Scholar 

  • Knutsen SH, Myslabodski DE, Larsen B, Usov AI (1994) A modified system of nomenclature for red algal galactans. Bot Mar 37:163–169

    Article  CAS  Google Scholar 

  • Kobayashi R, Takisada M, Suzuki T, Kirimura K, Usami S (1997) Neoagarobiose as a novel moisturizer with whitening effect. Biosci Biotechnol Biochem 61:162–163

    Article  CAS  PubMed  Google Scholar 

  • Kodama K, Shiozawa H, Ishii A (1993) Alteromonas rava sp. nov, a marine bacterium that produces a new antibiotic, thiomarinol. Ann Rep Sankyo Res Lab 45:131–136

    CAS  Google Scholar 

  • Leon O, Quintana L, Peruzzo G, Slebe JC (1992) Purification and properties of an extracellular agarase from Alteromonas sp. strain C-1. Appl Environ Microbiol 58:4060–4063

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lineweaver H, Burk D (1934) The determination of enzyme dissociation constants. J Amer Chem Soc 56:658–666

    Article  CAS  Google Scholar 

  • Martinez-Checa F, Bejar V, Llamas I, Del Moral A, Quesada E (2005) Alteromonas hispanica sp. nov, a polyunsaturated fatty acid producing, halophilic bacterium isolated from Fuente de Piedra, southern Spain. Int J Syst Evol Microbiol 55:2385–2390

    Article  CAS  PubMed  Google Scholar 

  • Morrice LM, McLean MW, Williamson FB, Long WF (1983) Beta-agarase I and II from Pseudomonas atlantica purifications and some properties. Eur J Biochem 135:553–558

    Article  CAS  PubMed  Google Scholar 

  • Oh C, Zoysa MD, Kwon YK, Heo SJ, Affan A, Jung WK, Park HS, Lee J, Son SK, Yoon KT, Kang DH (2011) Complete genome sequence of the agarase-producing marine bacterium strain S89, representing a novel species of the genus Alteromonas. J Bacteriol 193:5538–5538

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ohta Y, Hatada Y, Miyazaki M, Nogi Y, Ito S, Horikoshi K (2005) Purification and characterization of a novel α-agarase from a Thalassomonas sp. Curr Microbiol 50:212–216

    Article  CAS  PubMed  Google Scholar 

  • Potin P, Richard C, Rochas C, Kloareg B (1993) Purification and characterization of the alpha-agarase from Alteromonas agarlyticus (Cataldi) comb. nov, strain GJ1B. Eur J Biochem 214:599–607

    Article  CAS  PubMed  Google Scholar 

  • Raguenes G, Cambon-Bonavita MA, Lohier JF, Boisset C, Guezennec J (2003) A novel, highly viscous polysaccharide excreted by an Alteromonas isolated from a deep-sea hydrothermal vent shrimp. Curr Microbiol 46:448–452

    Article  CAS  PubMed  Google Scholar 

  • Rochas C, Lahaye M, Yaphe W (1986) 13C-N.M.R.-spectroscopic investigation of agarose oligomers. Carbohydr Res 148:199–207

    Article  CAS  Google Scholar 

  • Rochas C, Potin P, Kloareg B (1994) NMR spectroscopic investigation of agarose oligomers produced by an alpha-agarase. Carbohydr Res 253:69–77

    Article  CAS  PubMed  Google Scholar 

  • Segel IH (1976) Enzyme kinetics. In Biochemical calculations. How to solve mathematical problems in general biochemistry, 2nd edn. Wiley, New York, pp 214–229

    Google Scholar 

  • Temuujin U, Chi WJ, Lee SY, Chang YK, Hong SK (2011) Overexpression and biochemical characterization of DagA from Streptomyces coelicolor A3(2): an endo-type β-agarase producing neoagarotetraose and neoagarohexaose. Appl Microbiol Biotechnol 92:749–59

    Article  CAS  PubMed  Google Scholar 

  • Temuujin U, Chi WJ, Chang YK, Hong SK (2012) Identification and biochemical characterization of Sco3487 from Streptomyces coelicolor A3(2), an exo- and endo-type β-agarase-producing neoagarobiose. J Bacteriol 194:142–149

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Usov AI (1998) Structural analysis of red seaweed galactans of agar and carrageenan groups. Food Hydrocoll 12:301–308

    Article  CAS  Google Scholar 

  • van de Velde F, Knutsen SH, Usov AI, Rollema HS, Cerezo AS (2002) 1H and 13C high resolution NMR spectroscopy of carrageenans: application in research and industry. Trends Food Sci Technol 13:73–92

    Article  Google Scholar 

  • Wang J, Mou H, Jiang X, Guan H (2006) Characterization of a novel β-agarase from marine Alteromonas sp. SY37-12 and it degrading products. Appl Microbiol Biotechnol 71:833–839

    Article  CAS  PubMed  Google Scholar 

  • Xiao TF, Kim SM (2010) Agarase: review of major sources, categories, purification method, enzyme characteristics and applications. Mar Drugs 8:200–218

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by grant no. 2012-R1A1B3002174 from the Basic Research Program of the National Research Foundation (KRF) of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soon-Kwang Hong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chi, WJ., Park, D.Y., Seo, Y.B. et al. Cloning, expression, and biochemical characterization of a novel GH16 β-agarase AgaG1 from Alteromonas sp. GNUM-1. Appl Microbiol Biotechnol 98, 4545–4555 (2014). https://doi.org/10.1007/s00253-014-5510-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5510-4

Keywords

Navigation