Skip to main content

Advertisement

Log in

Engineered Exosomes for Targeted Transfer of siRNA to HER2 Positive Breast Cancer Cells

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Exosomes are the best options for gene targeting, because of their natural, nontoxic, non-immunogenic, biodegradable, and targetable properties. By engineering exosome-producing cells, ligands can be expressed fusing with exosomal surface proteins for targeting cancer cell receptors. In the present study, HER2-positive breast cancer cells were targeted with a modified exosome producing engineered HEK293T cell. For this purpose, the HEK293T cells were transduced by a lentiviral vector bearing-LAMP2b-DARPin G3 chimeric gene. Stable cells expressing the fusion protein were selected, and the exosomes produced by these cells were isolated from the culture medium, characterized, and then loaded with siRNA for subsequent delivery to the SKBR3 cells. Our results showed that stable HEK293T cells produced DARPin G3 on the surface of exosomes. These exosomes can bind specifically to HER2/Neu and are capable of delivering siRNA molecules against TPD52 gene into SKBR3 cell line down-regulating the gene expression up to 70%. Present approach is envisaged to facilitate genes and drugs transfer to HER2 cancer cells providing additional option for gene therapy and drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rose, D. P., Boyar, A. P., & Wynder, E. L. (1986). International comparisons of mortality rates for cancer of the breast, ovary, prostate, and colon, and per capita food consumption. Cancer, 58(11), 2363–2371.

    Article  CAS  PubMed  Google Scholar 

  2. Siegel, R., DeSantis, C., Virgo, K., Stein, K., Mariotto, A., Smith, T., Cooper, D., Gansler, T., Lerro, C., Fedewa, S., Lin, C., Leach, C., Cannady, R. S., Cho, H., Scoppa, S., Hachey, M., Kirch, R., Jemal, A., & Ward, E. (2012). Cancer treatment and survivorship statistics, 2012. CA: A Cancer Journal for Clinicians, 62(4), 220–241.

    Google Scholar 

  3. Brannon-Peppas, L., & Blanchette, J. O. (2012). Nanoparticle and targeted systems for cancer therapy. Advanced Drug Delivery Reviews, 64, 206–212.

    Article  Google Scholar 

  4. Wahlgren J, Karlson TDL, Brisslert M, Sani FV, Telemo E, Sunnerhagen P, et al. (2012). Plasma exosomes can deliver exogenous short interfering RNA to monocytes and lymphocytes. Nucleic Acids Research, 40(17), e130. https://doi.org/10.1093/nar/gks463.

  5. Valadi, H., Ekström, K., Bossios, A., Sjöstrand, M., Lee, J. J., & Lötvall, J. O. (2007). Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biology, 9(6), 654–659.

    Article  CAS  PubMed  Google Scholar 

  6. Lässer, C., Alikhani, V. S., Ekström, K., Eldh, M., Paredes, P. T., Bossios, A., et al. (2011). Human saliva, plasma and breast milk exosomes contain RNA: Uptake by macrophages. Journal of Translational Medicine, 9(1), 9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Camussi, G., Deregibus, M. C., Bruno, S., Cantaluppi, V., & Biancone, L. (2010). Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney International, 78(9), 838–848.

    Article  CAS  PubMed  Google Scholar 

  8. Deregibus, M. C., Cantaluppi, V., Calogero, R., Iacono, M. L., Tetta, C., Biancone, L., et al. (2007). Endothelial progenitor cell–derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA. Blood, 110(7), 2440–2448.

    Article  CAS  PubMed  Google Scholar 

  9. Kleijmeer, M. J., Escola, J. M., UytdeHaag, F. G., Jakobson, E., Griffith, J. M., Osterhaus, A. D., et al. (2001). Antigen loading of MHC class I molecules in the endocytic tract. Traffic, 2(2), 124–137.

    Article  CAS  PubMed  Google Scholar 

  10. Tan, A., De La Peña, H., & Seifalian, A. M. (2010). The application of exosomes as a nanoscale cancer vaccine. International Journal of Nanomedicine, 5, 889.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Alvarez-Erviti, L., Seow, Y., Yin, H., Betts, C., Lakhal, S., & Wood, M. J. (2011). Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nature Biotechnology, 29(4), 341–345.

    Article  CAS  PubMed  Google Scholar 

  12. Sun, Y., & Liu, J. (2014). Potential of Cancer cell–derived exosomes in clinical application: A review of recent research advances. Clinical Therapeutics, 36(6), 863–872.

    Article  PubMed  Google Scholar 

  13. Ohno, S.-i., Takanashi, M., Sudo, K., Ueda, S., Ishikawa, A., Matsuyama, N., et al. (2013). Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Molecular Therapy, 21(1), 185–191.

    Article  CAS  PubMed  Google Scholar 

  14. Manri, C., Yokoi, T., & Nishida, H. (2017). Size-selective harvesting of extracellular vesicles for strategic analyses towards tumor diagnoses. Applied Biochemistry and Biotechnology, 182(2), 609–623.

    Article  CAS  PubMed  Google Scholar 

  15. Zahnd, C., Wyler, E., Schwenk, J. M., Steiner, D., Lawrence, M. C., McKern, N. M., et al. (2007). A designed ankyrin repeat protein evolved to picomolar affinity to Her2. Journal of Molecular Biology, 369(4), 1015–1028.

    Article  CAS  PubMed  Google Scholar 

  16. Khodashenas, S., Moghadam, M. F., & Moazzeni, S. M. (2016). In silico design and verification of a chimer protein to target exosomes towards HER2 positive Cancer cells. Biosciences Biotechnology Research Asia, 13(2), 911–916.

    Article  Google Scholar 

  17. Khodashenas Limoni, S., Salimi, F., & Forouzandeh Moghaddam, M. (2017). Designing pLEX-LAMP-DARPin lentiviral vector for Exression of HER2 targeted DARPin on exosome surface. Journal of Mazandaran University of Medical. Sciences, 27(151), 12–23.

    Google Scholar 

  18. Kutner, R. H., Zhang, X.-Y., & Reiser, J. (2009). Production, concentration and titration of pseudotyped HIV-1-based lentiviral vectors. Nature Protocols, 4(4), 495–505.

    Article  CAS  PubMed  Google Scholar 

  19. Théry, C., Amigorena, S., Raposo, G., & Clayton, A. (2006). Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Current Protocols in Cell Biology, 3(22), 1–3. 9.

    Google Scholar 

  20. Escrevente, C., Keller, S., Altevogt, P., & Costa, J. (2011). Interaction and uptake of exosomes by ovarian cancer cells. BMC Cancer, 11(1), 108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kooijmans, S. A., Stremersch, S., Braeckmans, K., de Smedt, S. C., Hendrix, A., Wood, M. J., et al. (2013). Electroporation-induced siRNA precipitation obscures the efficiency of siRNA loading into extracellular vesicles. Journal of Controlled Release, 172(1), 229–238.

    Article  CAS  PubMed  Google Scholar 

  22. Li, J., Chen, X., Yi, J., Liu, Y., Li, D., Wang, J., Hou, D., Jiang, X., Zhang, J., Wang, J., Zen, K., Yang, F., Zhang, C. Y., & Zhang, Y. (2016). Identification and characterization of 293T cell-derived exosomes by profiling the protein, mRNA and microRNA components. PLoS One., 11(9), e0163043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Whitford, W., Ludlow, J. W., & Cadwell, J. J. (2015). Continuous production of exosomes: Utilizing the technical advantages of hollow-fiber bioreactor technology. Genetic Engineering & Biotechnology News, 35(16), 34.

    Article  Google Scholar 

  24. Zahnd, C., Kawe, M., Stumpp, M. T., de Pasquale, C., Tamaskovic, R., Nagy-Davidescu, G., Dreier, B., Schibli, R., Binz, H. K., Waibel, R., & Pluckthun, A. (2010). Efficient tumor targeting with high-affinity designed ankyrin repeat proteins: Effects of affinity and molecular size. Cancer Research, 70(4), 1595–1605.

    Article  CAS  PubMed  Google Scholar 

  25. Münch, R. C., Mühlebach, M. D., Schaser, T., Kneissl, S., Jost, C., Plückthun, A., Cichutek, K., & Buchholz, C. J. (2011). DARPins: An efficient targeting domain for lentiviral vectors. Molecular Therapy, 19(4), 686–693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zeelenberg, I. S., Ostrowski, M., Krumeich, S., Bobrie, A., Jancic, C., Boissonnas, A., Delcayre, A., le Pecq, J. B., Combadiere, B., Amigorena, S., & Thery, C. (2008). Targeting tumor antigens to secreted membrane vesicles in vivo induces efficient antitumor immune responses. Cancer Research, 68(4), 1228–1235.

    Article  CAS  PubMed  Google Scholar 

  27. Hartman, Z. C., Wei, J., Glass, O. K., Guo, H., Lei, G., Yang, X.-Y., Osada, T., Hobeika, A., Delcayre, A., le Pecq, J. B., Morse, M. A., Clay, T. M., & Lyerly, H. K. (2011). Increasing vaccine potency through exosome antigen targeting. Vaccine, 29(50), 9361–9367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tian, Y., Li, S., Song, J., Ji, T., Zhu, M., Anderson, G. J., Wei, J., & Nie, G. (2014). A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials, 35(7), 2383–2390.

    Article  CAS  PubMed  Google Scholar 

  29. Konecki, D. S., Foetisch, K., Zimmer, K.-P., Schlotter, M., & Konecki, U. L. (1995). An alternatively spliced form of the human lysosome-associated membrane protein-2 gene is expressed in a tissue-specific manner. Biochemical and Biophysical Research Communications, 215(2), 757–767.

    Article  CAS  PubMed  Google Scholar 

  30. Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning. New York: Cold spring harbor laboratory press.

    Google Scholar 

  31. Khodashenas, S., Moghadam, M. F., & Moazzeni, S. M. (2016). In silico design and verification of a chimer protein to target exosomes towards HER2 positive Cancer cells. Biosciences Biotechnology Research Asia., 13(2), 911–916.

    Article  Google Scholar 

  32. Momen-Heravi, F., Bala, S., Bukong, T., & Szabo, G. (2014). Exosome-mediated delivery of functionally active miRNA-155 inhibitor to macrophages. Nanomedicine: Nanotechnology, Biology and Medicine., 10(7), 1517–1527.

    Article  CAS  Google Scholar 

  33. Vashisht, M., Rani, P., Onteru, S. K., & Singh, D. (2017). Curcumin encapsulated in milk exosomes resists human digestion and possesses enhanced intestinal permeability in vitro. Applied Biochemistry and Biotechnology, 183(3), 993–1007.

    Article  CAS  PubMed  Google Scholar 

  34. Roslan, N., Bièche, I., Bright, R. K., Lidereau, R., Chen, Y., & Byrne, J. A. (2014). TPD52 represents a survival factor in ERBB2-amplified breast cancer cells. Molecular Carcinogenesis, 53(10), 807–819.

    Article  CAS  PubMed  Google Scholar 

  35. Roslan N. (2013). PhD thesis, Inhibiting tumor protein D52 function for anti-cancer therapy application. Sydney: University of Sydney.

Download references

Funding

This work was supported by educational program grant from Tarbiat Modares University and Iranian national science foundation: INSF (code No: 90006884).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Forouzandeh Moghadam.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOC 35 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Limoni, S.K., Moghadam, M.F., Moazzeni, S.M. et al. Engineered Exosomes for Targeted Transfer of siRNA to HER2 Positive Breast Cancer Cells. Appl Biochem Biotechnol 187, 352–364 (2019). https://doi.org/10.1007/s12010-018-2813-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-018-2813-4

Keywords

Navigation