Skip to main content

Advertisement

Log in

Curcumin Encapsulated in Milk Exosomes Resists Human Digestion and Possesses Enhanced Intestinal Permeability in Vitro

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Exosomes, the extracellular secretary nano-vesicles, act as carriers of biomolecules to the target cells. They exhibit several attributes of an efficient drug delivery system. Curcumin, despite having numerous bioactive and therapeutic properties, has limited pharmaceutical use due to its poor water solubility, stability, and low systemic bioavailability. Hence, this study aims to enhance the therapeutic potential of curcumin, a model hydrophobic drug, by its encapsulation into milk exosomes. In the present study, we investigated the stability of free curcumin and exosomal curcumin in PBS and in vitro digestive processes. Additionally, their uptake and trans-epithelial transport were studied on Caco-2 cells. Curcumin in milk exosomes had higher stability in PBS, sustained harsh digestive processes, and crossed the intestinal barrier than free curcumin. In conclusion, the encapsulation of curcumin into the exosomes enhances its stability, solubility, and bioavailability. Therefore, the present study demonstrated that milk exosomes act as stable oral drug delivery vehicles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mathivanan, S., Ji, H., & Simpson, R. J. (2010). Exosomes: extracellular organelles important in intercellular communication. Journal of Proteomics, 73, 1907–1920.

    Article  CAS  Google Scholar 

  2. Valadi, H., Ekström, K., Bossios, A., Sjöstrand, M., Lee, J. J., & Lötvall, J. O. (2007). Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biology, 9, 654–659.

    Article  CAS  Google Scholar 

  3. Wang, J., Yao, Y., Xiong, J., Wu, J., Tang, X., & Li, G. (2015). Evaluation of the inflammatory response in macrophages stimulated with exosomes secreted by Mycobacterium avium-infected macrophages. BioMed Research International, 2015, 1–9.

    Google Scholar 

  4. Sung, B. H., Ketova, T., Hoshino, D., Zijlstra, A., & Weaver, A. M. (2015). Directional cell movement through tissues is controlled by exosome secretion. Nature Communications, 6, 1–14.

    Google Scholar 

  5. Holder, B., Jones, T., Sancho, S. V., Rice, T. F., Donaldson, B., Bouqueau, M., Forbes, K., & Kampmann, B. (2016). Macrophage exosomes induce placental inflammatory cytokines: a novel mode of maternal-placental messaging. Traffic, 17, 168–178.

    Article  CAS  Google Scholar 

  6. Wang, J., De, V. K., Faict, S., Frassanito, M. A., Ribatti, D., Vacca, A., & Menu, E. (2016). Multiple myeloma exosomes establish a favourable bone marrow microenvironment with enhanced angiogenesis and immunosuppression. The Journal of Pathology, 239, 162–173.

    Article  CAS  Google Scholar 

  7. Karlsson, T., Lundholm, M., Widmark, A., & Persson, E. (2016). Tumor cell-derived exosomes from the prostate cancer cell line TRAMP-C1 impair osteoclast formation and differentiation. PloS One, 11, 1–12.

    Google Scholar 

  8. Harada, T., Yamamoto, H., Kishida, S., Kishida, M., Awada, C., Takao, T., & Kikuchi, A. (2016). Wnt5b-associated exosomes promote cancer cell migration and proliferation. Cancer Science, 108, 42–52.

    Article  Google Scholar 

  9. Wu, L., Zhang, X., Zhang, B., Shi, H., Yuan, X., Sun, Y., Pan, Z., Qian, H., & Xu, W. (2016). Exosomes derived from gastric cancer cells activate NF-κB pathway in macrophages to promote cancer progression. Tumour Biology, 37, 12169–12180.

    Article  CAS  Google Scholar 

  10. Munoz, J. L., Bliss, S. A., Greco, S. J., Ramkissoon, S. H., Ligon, K. L., & Rameshwar, P. (2013). Delivery of functional anti-miR-9 by mesenchymal stem cell-derived exosomes to glioblastoma multiforme cells conferred chemosensitivity. Molecular Therapy- Nucleic Acids, 2, 1–11.

    Article  Google Scholar 

  11. Alvarez-Erviti, L., Seow, Y., Yin, H., Betts, C., Lakhal, S., & Wood, M. J. A. (2011). Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nature Biotechnology, 29, 341–345.

    Article  CAS  Google Scholar 

  12. Haney, M. J., Klyachko, N. L., Zhao, Y., Gupta, R., Plotnikova, E. G., He, Z., Patel, T., Piroyan, A., Sokolsky, M., Kabanov, A. V., & Batrakova, E. V. (2015). Exosomes as drug delivery vehicles for Parkinson’s disease therapy. Journal of Controlled Release, 207, 18–30.

    Article  CAS  Google Scholar 

  13. Tian, Y., Li, S., Song, J., Ji, T., Zhu, M., Anderson, G. J., et al. (2013). A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials, 35, 2383–2390.

    Article  Google Scholar 

  14. Kim, M. S., Haney, M. J., Zhao, Y., Mahajan, V., Deygen, I., Klyachko, N. L., Inskoe, E., Piroyan, A., Sokolsky, M., Okolie, O., Hingtgen, S. D., Kabanov, A. V., & Batrakova, E. V. (2016). Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomedicine, 12, 655–664.

    Article  CAS  Google Scholar 

  15. Davidson, S. M., Takov, K., & Yellon, D. M. (2016). Exosomes and cardiovascular protection. Cardiovascular Drugs and Therapy, 31, 77–86.

    Article  Google Scholar 

  16. Kouwaki, T., Fukushima, Y., Daito, T., Sanada, T., Yamamoto, N., Mifsud, E. J., Leong, C. R., Tsukiyama-Kohara, K., Kohara, M., Matsumoto, M., Seya, T., & Oshiumi, H. (2016). Extracellular vesicles including exosomes regulate innate immune responses to hepatitis B virus infection. Frontiers in Immunology, 7, 1–13.

    Article  Google Scholar 

  17. Ferreira, V. H., Nazli, A., Dizzell, S. E., Mueller, K., & Kaushic, C. (2015). The anti-inflammatory activity of curcumin protects the genital mucosal epithelial barrier from disruption and blocks replication of HIV-1 and HSV-2. PloS One, 10, 1–18.

    CAS  Google Scholar 

  18. Beevers, C. S., Chen, L., Liu, L., Luo, Y., Webster, N. J., & Huang, S. (2009). Curcumin disrupts the mammalian target of rapamycin-raptor complex. Cancer Research, 69, 1000–1008.

    Article  CAS  Google Scholar 

  19. Gordon, O. N., Luis, P. B., Sintim, H. O., & Schneider, C. (2015). Unraveling curcumin degradation: autoxidation proceeds through spiroepoxide and vinylether intermediates en route to the main bicyclopentadione. The Journal of Biological Chemistry, 290, 4817–4828.

    Article  CAS  Google Scholar 

  20. Sun, Q., Chen, X., Yu, J., Zen, K., Zhang, C. Y., & Li, L. (2013). Immune modulatory function of abundant immune-related microRNAs in microvesicles from bovine colostrum. Protein & Cell, 4, 197–210.

    Article  CAS  Google Scholar 

  21. Athira, G., & Jyothi, A. (2014). Preparation and characterization of curcumin loaded cassava starch nanoparticles with improved cellular absorption. International Journal of Pharmacy and Pharmaceutical Sciences, 6, 171–176.

    CAS  Google Scholar 

  22. Kopf-Bolanz, K. A., Schwander, F., Gijs, M., Verge’res, G., Portmann, R., & Egger, L. (2011). Validation of an in vitro digestive system for studying macronutrient decomposition in humans. Journal of Nutrition, 142, 245–250.

    Article  Google Scholar 

  23. Vij, R., Reddi, S., Kapila, S., & Kapila, R. (2016). Transepithelial transport of milk derived bioactive peptide VLPVPQK. Food Chemistry, 190, 681–688.

    Article  CAS  Google Scholar 

  24. Colombo, M., Raposa, G., & Thery, C. (2014). Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annual Review of Cell and Developmental Biology, 30, 255–289.

    Article  CAS  Google Scholar 

  25. Lasser, C., Alikhani, V. S., Ekstrom, K., Eldh, M., Paredes, P. T., & Bossios, A. (2011). Human saliva, plasma and breast milk exosomes contain RNA: uptake by macrophages. Journal of Translational Medicine, 9, 1–8.

    Article  Google Scholar 

  26. Munagala, R., Aqil, F., Jeyabalan, J., & Gupta, R. (2016). Bovine milk-derived exosomes for drug delivery. Cancer Letters, 371, 48–61.

    Article  CAS  Google Scholar 

  27. Madison, M. N., Roller, R. J., & Okeoma, C. M. (2014). Human semen contains exosomes with potent anti-HIV activity. Retrovirology, 11, 1–15.

    Article  Google Scholar 

  28. Dear, J. W., Street, J. M., & Bailey, M. A. (2013). Urinary exosomes: a reservoir for biomarker discovery and potential mediators of intrarenal signaling. Proteomics, 13, 1572–1580.

    Article  CAS  Google Scholar 

  29. Street, J. M., Barran, P. E., Mackay, C. L., Weidt, S., Balmforth, C., & Walsh, T. S. (2012). Identification and proteomic profiling of exosomes in human cerebrospinal fluid. Journal of Translational Medicine, 10, 1–7.

    Article  Google Scholar 

  30. Thery, C., Ostrowski, M., & Segura, E. (2009). Membrane vesicles as conveyors of immune response. Nature Reviews Immunology, 9, 581–593.

    Article  CAS  Google Scholar 

  31. Toro, J. D., Herschlik, L., Waldner, C., & Mongini, C. (2015). Emerging roles of exosomes in normal and pathological conditions: new insights for diagnosis and therapeutics applications. Frontiers in Immunology, 6, 1–12.

    Article  Google Scholar 

  32. Ban, J., Lee, M., Im, W., & Kim, M. (2015). Low pH increases the yield of exosome isolation. Biochemical and Biophysical Research Communication, 461, 76–79.

    Article  CAS  Google Scholar 

  33. Malik, Z. A., Kott, K. S., Poe, A. J., Kuo, T., Chen, L., Ferrara, K., & Knowlton, A. (2013). Cardiac myocyte exosomes: stability, HSP60 and proteomics. American Journal of Physiology Heart and Circulatory Physiology, 304, H954–H965.

    Article  CAS  Google Scholar 

  34. Sun, D., Zhuang, X., Xiang, X., Liu, Y., Zhang, S., Liu, C., Barnes, S., Grizzle, W., Miller, D., & Zhang, H. (2010). A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Molecular Therapy, 9, 1606–1614.

    Article  Google Scholar 

  35. Choudhury, S., Das, N., Ghosh, S., Ghosh, D., Chakroborty, S., & Ali, N. (2016). Vesicular (liposomal and nanoparticulated) delivery of curcumin: a comparative study on carbon tetrachloride mediated oxidative hepatocellular damage in rat model. International Journal of Nanomedicine, 11, 2179–2193.

    CAS  Google Scholar 

  36. Chen, L., Bai, G., Yang, R., Zhao, G., Xu, C., & Leung, W. (2014). Encapsulation of curcumin in recombinant human H-chain ferritin increases its water-solubility and stability. Food Research International, 62, 1147–1153.

    Article  CAS  Google Scholar 

  37. Boorn, J., Schlee, M., Coch, C., & Hartmann, G. (2011). siRNA delivery with exosome nanoparticles. Nature Biotechnology, 29, 325–326.

    Article  Google Scholar 

  38. Anand, P., Kunnumakkara, A., Newman, R., & Aggarwal, B. B. (2007). Bioavailability of curcumin: problems and promises. Molecular Pharmaceutics, 4, 807–818.

    Article  CAS  Google Scholar 

  39. Lee, W., Loo, C., Bebawy, M., Luk, F., Masen, R., & Rohanizadeh, R. (2013). Curcumin and its derivatives: their application in neuropharmacology and neuroscience in the 21st century. Current Neuropharmacology, 11, 338–378.

    Article  CAS  Google Scholar 

  40. Sutradhar, B., Khatun, S., & Luna, I. (2013). Increasing possibilities of nanosuspension. Journal of Nanotechnology, 12, 204–217.

    Google Scholar 

  41. Priyadarsini, K. I. (2014). The chemistry of curcumin: from extraction to therapeutic. Molecules, 19, 20091–20112.

    Article  Google Scholar 

  42. Priyadarsini, K. (2013). Chemical and structural features influencing the biological activity of curcumin. Current Pharmaceutical Design, 19, 2093–2100.

    CAS  Google Scholar 

  43. Wang, Y. J., Pan, M. H., Cheng, A. L., Lin, L. I., Ho, Y. S., Hsieh, C. Y., & Lin, J. K. (1997). Stability of curcumin in buffer solutions and characterization of its degradation products. Journal of Pharmaceutical and Biomedical Analysis, 15, 1867–1876.

    Article  CAS  Google Scholar 

  44. Tonnesen, H. H., & Karlsen, J. (1985). Studies on curcumin and curcuminoids. VI. Kinetics of curcumin degradation in aqueous solution. Zeitschrift fur Lebensmittel- Untersuchung- Forschung, 180, 402–404.

    Article  CAS  Google Scholar 

  45. Baddela, V. S., Nayan, V., Rani, P., Onteru, S. K., & Singh, D. (2015). Physicochemical biomolecular insights into buffalo milk-derived nanovesicles. Applied Biochemistry and Biotechnology, 178, 544–577.

    Article  Google Scholar 

  46. Hidalgo, I. J., Raub, T. J., & Borchardt, R. T. (1989). Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology, 96, 736–749.

    Article  CAS  Google Scholar 

  47. Meunier, V., Bourrié, M., Berger, Y., & Fabre, G. (1995). The human intestinal epithelial cell line Caco-2; pharmacological and pharmacokinetic applications. Cell Biology and Toxicology, 11, 187–194.

    Article  CAS  Google Scholar 

  48. Wolf, T., Baier, S. R., & Zempleni, J. (2015). The intestinal transport of bovine milk exosomes is mediated by endocytosis in human colon carcinoma Caco-2 cells and rat small intestinal IEC-6 cells. Journal of Nutrition, 145, 2201–2206.

    Article  CAS  Google Scholar 

  49. Osterman, C. J., Lynch, J. C., Leaf, P., Gonda, A., Ferguson, B. H. R., Griffiths, D., & Wall, N. R. (2015). Curcumin modulates pancreatic adenocarcinoma cell-derived exosomal function. PloS One, 10, 1–17.

    Google Scholar 

  50. Taverna, S., Fontana, S., Monteleone, F., Pucci, M., Saieva, L., De Caro, V., Cardinale, V. G., Giallombardo, M., Vicario, E., Rolfo, C., Leo, G. D., & Alessandro, R. (2016). Curcumin modulates chronic myelogenous leukemia exosomes composition and affects angiogenicphenotype via exosomal miR-21. Oncotarget, 7, 30420–30439.

    Article  Google Scholar 

  51. Artursson, P., Palm, K., & Luthman, K. (2001). Caco-2 monolayers in experimental and theoretical predictions of drug transport. Advanced Drug Delivery Reviews, 46, 27–43.

    Article  CAS  Google Scholar 

  52. Chen, J., Xu, T., & Chen, C. (2015). The critical roles of miR-21 in anti-cancer effects of curcumin. Annals of Translational Medicine, 3, 330.

    Google Scholar 

  53. Mudduluru, G., George-William, J. N., Muppala, S., Asangani, I. A., Kumarswamy, R., Nelson, L. D., & Allgayer, H. (2015). Curcumin regulates miR-21 expression and inhibits invasion and metastasis in colorectal cancer. Bioscience Reports, 31, 185–197.

    Article  Google Scholar 

Download references

Acknowledgments

We are thankful to the Director, NDRI, Karnal, for providing the necessary facilities for this work. We are grateful to CRP on Nanotechnology-ICAR for the support. We acknowledge Dr. S. K. Tomar for providing the SEM facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dheer Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vashisht, M., Rani, P., Onteru, S.K. et al. Curcumin Encapsulated in Milk Exosomes Resists Human Digestion and Possesses Enhanced Intestinal Permeability in Vitro. Appl Biochem Biotechnol 183, 993–1007 (2017). https://doi.org/10.1007/s12010-017-2478-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2478-4

Keywords

Navigation