Skip to main content

Advertisement

Log in

Valorization of Bone Waste of Saudi Arabia by Synthesizing Hydroxyapatite

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

At present, hydroxyapatite is being frequently used for diverse biomedical applications as it possesses excellent biocompatibility, osteoconductivity, and non-immunogenic characteristics. The aim of the present work was to recycle bone waste for synthesis of hydroxyapatite nanoparticles to be used as bone extracellular matrix. For this reason, we for the first time utilized bio-waste of cow bones of Albaha city. The residual bones were utilized for the extraction of natural bone precursor hydroxyapatite. A facile scientific technique has been used to synthesize hydroxyapatite nanoparticles through calcinations of wasted cow bones without further supplementation of chemicals/compounds. The obtained hydroxyapatite powder was ascertained using physicochemical techniques such as XRD, SEM, FTIR, and EDX. These analyses clearly show that hydroxyapatite from native cow bone wastes is biologically and physicochemically comparable to standard hydroxyapatite, commonly used for biomedical functions. The cell viability and proliferation over the prepared hydroxyapatite was confirmed with CCk-8 colorimetric assay. The morphology of the cells growing over the nano-hydroxyapatite shows that natural hydroxyapatite promotes cellular attachment and proliferation. Hence, the as-prepared nano-hydroxyapatite can be considered as cost-effective source of bone precursor hydroxyapatite for bone tissue engineering. Taking into account the projected demand for reliable bone implants, the present research work suggested using environment friendly methods to convert waste of Albaha city into nano-hydroxyapatite scaffolds. Therefore, besides being an initial step towards accomplishment of projected demands of bone implants in Saudi Arabia, our study will also help in reducing the environmental burden by recycling of bone wastes of Albaha city.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1

Similar content being viewed by others

References

  1. Wu, S., Liu, X., Yeung, K. W. K., Liu, C., & Yang, X. (2014). Biomimetic porous scaffolds for bone tissue engineering. Materials Science and Engineering: R: Reports, 80, 1–36.

    Article  Google Scholar 

  2. Cai, Y., & Tang, R. (2008). Calcium phosphate nanoparticles in biomineralization and biomaterials. Journal of Materials Chemistry, 18(32), 3775–3787.

    Article  CAS  Google Scholar 

  3. Tampieri, A., Sprio, S., Ruffini, A., Celotti, G., Lesci, I. G., & Roveri, N. (2009). From wood to bone: multi-step process to convert wood hierarchical structures into biomimetic hydroxyapatite scaffolds for bone tissue engineering. Journal of Materials Chemistry, 19(28), 4973–4980.

    Article  CAS  Google Scholar 

  4. Zhang, C., Yang, J., Quan, Z., Yang, P., Li, C., Hou, Z., & Lin, J. (2009). Hydroxyapatite nano-and microcrystals with multiform morphologies: controllable synthesis and luminescence properties. Crystal Growth and Design, 9(6), 2725–2733.

    Article  CAS  Google Scholar 

  5. Hou, Z., Yang, P., Lian, H., Wang, L., Zhang, C., Li, C., Chai, R., Cheng, Z., & Lin, J. (2009). Multifunctional hydroxyapatite nanofibers and microbelts as drug carriers. Chemistry–A European Journal, 15(28), 6973–6982.

    Article  CAS  Google Scholar 

  6. Ma, M.-Y., Zhu, Y.-J., Li, L., & Cao, S.-W. (2008). Nanostructured porous hollow ellipsoidal capsules of hydroxyapatite and calcium silicate: preparation and application in drug delivery. Journal of Materials Chemistry, 18(23), 2722–2727.

    Article  CAS  Google Scholar 

  7. White, A. A., Best, S. M., & Kinloch, I. A. (2007). Hydroxyapatite–carbon nanotube composites for biomedical applications: a review. International Journal of Applied Ceramic Technology, 4(1), 1–13.

    Article  CAS  Google Scholar 

  8. Du, C., & Wang, Y.-J. (2009). Progress in the biomineralization study of bone and enamel and biomimetic synthesis of calcium phosphate. Journal of Inorganic Materials-Beijing, 24(5), 882–888.

    Article  CAS  Google Scholar 

  9. Palmer, L. C., Newcomb, C. J., Kaltz, S. R., Spoerke, E. D., & Stupp, S. I. (2008). Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel. Chemical Reviews, 108(11), 4754–4783.

    Article  CAS  Google Scholar 

  10. Xiao, J., Zhu, Y., Ruan, Q., Liu, Y., Zeng, Y., Xu, F., & Zhang, L. (2010). Biomacromolecule and surfactant complex matrix for oriented stack of 2-dimensional carbonated hydroxyapatite nanosheets as alignment in calcified tissues. Crystal Growth & Design, 10(4), 1492–1499.

    Article  CAS  Google Scholar 

  11. Cheng, X., Huang, Z., Li, J., Liu, Y., Chen, C., Chi, R.-A., & Hu, Y. (2010). Self-assembled growth and pore size control of the bubble-template porous carbonated hydroxyapatite microsphere. Crystal Growth & Design, 10(3), 1180–1188.

    Article  CAS  Google Scholar 

  12. Cheng, X., He, Q., Li, J., Huang, Z., & Chi, R.-A. (2009). Control of pore size of the bubble-template porous carbonated hydroxyapatite microsphere by adjustable pressure. Crystal Growth and Design, 9(6), 2770–2775.

    Article  CAS  Google Scholar 

  13. Zhang, C., Cheng, Z., Yang, P., Xu, Z., Peng, C., Li, G., & Lin, J. (2009). Architectures of strontium hydroxyapatite microspheres: solvothermal synthesis and luminescence properties. Langmuir, 25(23), 13591–13598.

    Article  CAS  Google Scholar 

  14. Tan, S.-H., Chen, X.-G., Ye, Y., Sun, J., Dai, L.-Q., & Ding, Q. (2010). Hydrothermal removal of Sr 2+ in aqueous solution via formation of Sr-substituted hydroxyapatite. Journal of Hazardous Materials, 179(1-3), 559–563.

    Article  CAS  Google Scholar 

  15. Hui, J., Xiang, G., Xu, X., Zhuang, J., & Wang, X. (2009). Monodisperse F-substituted hydroxyapatite single-crystal nanotubes with amphiphilic surface properties. Inorganic Chemistry, 48(13), 5614–5616.

    Article  CAS  Google Scholar 

  16. Liu, J.-K., Cao, T.-J., Lu, Y., & Luo, C.-X. (2009). Facile preparation of assembly hydroxyapatite spheres to produce nanocomposite. Materials Technology, 24(2), 88–91.

    Article  Google Scholar 

  17. Shum, H. C., Bandyopadhyay, A., Bose, S., & Weitz, D. A. (2009). Double emulsion droplets as microreactors for synthesis of mesoporous hydroxyapatite. Chemistry of Materials, 21(22), 5548–5555.

    Article  CAS  Google Scholar 

  18. Neira, I. S., Kolen’ko, Y. V., Lebedev, O. I., Van Tendeloo, G., Gupta, H. S., Guitián, F., & Yoshimura, M. (2008). An effective morphology control of hydroxyapatite crystals via hydrothermal synthesis. Crystal Growth and Design, 9, 466–474.

    Article  Google Scholar 

  19. Ma, M. G., & Zhu, J. F. (2009). Solvothermal synthesis and characterization of hierarchically nanostructured hydroxyapatite hollow spheres. European Journal of Inorganic Chemistry, 2009, 5522–5526.

    Article  Google Scholar 

  20. Bigi, A., Boanini, E., & Rubini, K. (2004). Hydroxyapatite gels and nanocrystals prepared through a sol–gel process. Journal of Solid State Chemistry, 177(9), 3092–3098.

    Article  CAS  Google Scholar 

  21. Kithva, P., Grøndahl, L., Martin, D., & Trau, M. (2010). Biomimetic synthesis and tensile properties of nanostructured high volume fraction hydroxyapatite and chitosan biocomposite films. Journal of Materials Chemistry, 20(2), 381–389.

    Article  CAS  Google Scholar 

  22. López-Macipe, A., Gómez-Morales, J., & Rodríguez-Clemente, R. (1998). Nanosized hydroxyapatite precipitation from homogeneous calcium/citrate/phosphate solutions using microwave and conventional heating. Advanced Materials, 10(1), 49–53.

    Article  Google Scholar 

  23. Wang, X., Qian, C., & Yu, X. (2014). Synthesis of nano-hydroxyapatite via microbial method and its characterization. Applied Biochemistry and Biotechnology, 173(4), 1003–1010.

    Article  CAS  Google Scholar 

  24. Barakat, N. A., Khalil, K., Sheikh, F. A., Omran, A., Gaihre, B., Khil, S. M., & Kim, H. Y. (2008). Physiochemical characterizations of hydroxyapatite extracted from bovine bones by three different methods: extraction of biologically desirable HAp. Materials Science and Engineering: C, 28(8), 1381–1387.

    Article  CAS  Google Scholar 

  25. Barakat, N. A., Khil, M. S., Omran, A., Sheikh, F. A., & Kim, H. Y. (2009). Extraction of pure natural hydroxyapatite from the bovine bones bio waste by three different methods. Journal of Materials Processing Technology, 209(7), 3408–3415.

    Article  CAS  Google Scholar 

  26. He, G., Dahl, T., Veis, A., & George, A. (2003). Nucleation of apatite crystals in vitro by self-assembled dentin matrix protein 1. Nature Materials, 2(8), 552–558.

    Article  CAS  Google Scholar 

  27. Antonakos, A., Liarokapis, E., & Leventouri, T. (2007). Micro-Raman and FTIR studies of synthetic and natural apatites. Biomaterials, 28(19), 3043–3054.

    Article  CAS  Google Scholar 

  28. Wei, G., Reichert, J. r., Bossert, J. r., & Jandt, K. D. (2008). Novel biopolymeric template for the nucleation and growth of hydroxyapatite crystals based on self-assembled fibrinogen fibrils. Biomacromolecules, 9(11), 3258–3267.

    Article  CAS  Google Scholar 

  29. Blakeslee, K., & Condrate, R. A. (1971). Vibrational spectra of hydrothermally prepared hydroxyapatites. Journal of the American Ceramic Society, 54(11), 559–563.

    Article  CAS  Google Scholar 

  30. Lee, Y., Hahm, Y. M., Matsuya, S., Nakagawa, M., & Ishikawa, K. (2007). Characterization of macroporous carbonate-substituted hydroxyapatite bodies prepared in different phosphate solutions. Journal of Materials Science, 42(18), 7843–7849.

    Article  CAS  Google Scholar 

  31. Lim, S.-R., Gooi, B.-H., Singh, M., & Gam, L.-H. (2011). Analysis of differentially expressed proteins in colorectal cancer using hydroxyapatite column and SDS-PAGE. Applied Biochemistry and Biotechnology, 165(5-6), 1211–1224.

    Article  CAS  Google Scholar 

  32. Maachou, H., Bal, K., Bal, Y., Chagnes, A., Cote, G., & Aliouche, D. (2012). In vitro biomineralization and bulk characterization of chitosan/hydroxyapatite composite microparticles prepared by emulsification cross-linking method: orthopedic use. Applied Biochemistry and Biotechnology, 168(6), 1459–1475.

    Article  CAS  Google Scholar 

  33. Lee, J. P., Lee, J. S., & Park, S. C. (1999). Two-phase methanization of food wastes in pilot scale. Twentieth Symposium on Biotechnology for Fuels and Chemicals (pp. 585–593). Berlin: Springer.

    Book  Google Scholar 

  34. Han, G., Shin, S. G., Lee, J., Lee, C., Jo, M., & Hwang, S. (2016). Mesophilic acidogenesis of food waste-recycling wastewater: effects of hydraulic retention time, pH, and temperature. Applied Biochemistry and Biotechnology, 180(5), 980–999.

    Article  CAS  Google Scholar 

Download references

Funding

This research (Proposal No. 54-1436) was supported by the Deanship for Scientific Research, University of Albaha, Albaha, Kingdom of Saudi Arabia (KSA), funded by the Ministry of Higher Education. Prof. Dr. Touseef Amna sincerely acknowledges the research grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Touseef Amna.

Ethics declarations

Conflict of Interest

The author declares that he has no conflict of interest.

Ethical Statement

In the present study, there is no use of experimental animals. All the experiments were done under in vitro conditions following standard scientific procedures and ethics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amna, T. Valorization of Bone Waste of Saudi Arabia by Synthesizing Hydroxyapatite. Appl Biochem Biotechnol 186, 779–788 (2018). https://doi.org/10.1007/s12010-018-2768-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-018-2768-5

Keywords

Navigation