Skip to main content

Advertisement

Log in

Characterization of macroporous carbonate-substituted hydroxyapatite bodies prepared in different phosphate solutions

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Bone mineral of human is different in composition from the stoichiometric hydroxyapatite (Ca10(PO4)6(OH)2) in that it contains additional ions, of which CO 2−3 is the most abundant species. Carbonate-substituted hydroxyapatite (CHA) bodies were prepared by the hydrothermal treatment of highly porous calcium carbonate (CaCO3) body at 120 °C in 1 M M2HPO4 and M3PO4 solutions (M = NH4 or K). It was found that CaCO3 body was almost transformed into CHA body after hydrothermal treatment for 24 h irrespective of type of phosphate solution. However, a small amount of CaCO3 still remained after the treatment in K3PO4 for 48 h. Crystal shape of CHA bodies prepared in those solutions except for K2HPO4 was flake-like, which was different from that (stick-like) of original CaCO3 body used for the preparation of CHA body. CHA prepared in the K2HPO4 showed globule-like crystal. Average pore size and hole size of the CHA bodies were 150, 70 μm and their porosities were about 89% irrespective of the solution. Carbonate content was slightly higher in the CHA bodies obtained from potassium phosphate solutions than in those obtained from ammonium phosphate solutions. Mostly B-type CHA was obtained after the hydrothermal treatment in the potassium phosphate solutions. On the other hand, mixed A- and B-type CHA (ca. 1–2 in molar ratio) was obtained in the ammonium phosphate solutions. The content of CO 2−3 in the CHA body depended on the type of phosphate solution and was slightly larger in the potassium phosphate solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rau JV, Cesaro SN, Ferro D, Barinov SM, Fadeeva JV (2004) J Biomed Mater Res Part B: Appl Biomater 71B(2):441

    Article  CAS  Google Scholar 

  2. Baig AA, Fox JL, Su J, Wang Z, Otsuka M, Higuchi WI, Legeros RZ (1996) J Colloid Interface Sci 179:608

    Article  CAS  Google Scholar 

  3. Tang R, Henneman ZJ, Nancollas GH (2003) J Cryst Growth 249:614

    Article  CAS  Google Scholar 

  4. Rieters IY, Maeyer EAPD, Verbeeck RMH (1996) Inorg Chem 35:5791

    Article  Google Scholar 

  5. Wenk HR, Heidelbach F (1999) Bone 24(4):361

    Article  CAS  Google Scholar 

  6. Landi E, Tampieri A, Celotti G, Langenati R, Sandri M, Sprio S (2005) Biomaterials 26:2835

    Article  CAS  Google Scholar 

  7. Barralet J, Best S, Bonfield W (1998) J Biomed Mater Res 41(1):79

    Article  CAS  Google Scholar 

  8. Barralet J, Akao M, Aoki H (2000) J Biomed Mater Res 49(2):176

    Article  CAS  Google Scholar 

  9. Suchanek WL, Shuk P, Byrappa K, Riman RE, Tenhuisen KS, Janas VF (2002) Biomaterials 23:699

    Article  CAS  Google Scholar 

  10. Redey SA, Nardin M, Assolant DB, Rey C, Delannoy P, Sedel L, Marie PJ (2000) J Biomed Mater Res 50(3):353

    Article  CAS  Google Scholar 

  11. Barralet JE, Aldred S, Wright AJ, Coombes AGA (2002) J Biomed Mater Res 60:360

    Article  CAS  Google Scholar 

  12. Matsumoto T, Okazaki M, Inoue M, Ode S, Chien CC, Nakao H, Hamada Y, Takahashi J (2002) J Biomed Mater Res 60:651

    Article  CAS  Google Scholar 

  13. Barralet JE, Best SM, Bonfield W (2000) J Mater Sci: Mater Med 11:719

    CAS  Google Scholar 

  14. Tonsuaadu K, Peld M, Leskela T, Mannonen R, Niinisto L, Veiderma M (1995) Thermochim Acta 256:55

    Article  CAS  Google Scholar 

  15. Feki HE, Savariault JM, Salah AB, Jemal M (2000) Solid State Sci 2:577

    Article  Google Scholar 

  16. Oliverira LM, Rossi AM, Lopes RT (2000) Appl Radiat Isotopes 52:1093

    Article  Google Scholar 

  17. Fleet ME, Liu X (2004) J Solid State Chem 177:3174

    Article  CAS  Google Scholar 

  18. Fleet ME, Liu X, King PL (2004) Am Mineral 89:1422

    Article  CAS  Google Scholar 

  19. Landi E, Tampieri A, G Celotti, Vichi L, Sandri M (2004) Biomaterials 25:1763

    Article  CAS  Google Scholar 

  20. Fleet ME, Liu X (2003) J Solid State Chem 174:412

    Article  CAS  Google Scholar 

  21. Redey SA, Razzouk S, Rey C, Assollant DB, Leroy G, Nardin M, Cournot G (1999) J Biomed Mater Res 45:140

    Article  CAS  Google Scholar 

  22. Ellies LG, Lelson DGA, Featherstone JDB (1988) J Biomed Mater Res 22:541

    Article  CAS  Google Scholar 

  23. Navarro M, Valle SD, Martinez S, Zeppetelli S, Ambrosio L, Planell JA, Ginebra MP (2004) Biomaterials 25:4233

    Article  CAS  Google Scholar 

  24. Verveecke G, Lemaitre J (1990) J Cryst Growth 104:820

    Article  Google Scholar 

  25. Legeros RZ, Trautz OR (1967) Science 155:1409

    Article  CAS  Google Scholar 

  26. Legeros RZ (1991) In: Meyers HM (ed) Monographs in oral science, vol 15. KARGER, Basel, p 18

  27. Bonel G, Montel G (1964) Comp Rend Acad Sci (Paris) 258:923

    CAS  Google Scholar 

  28. Legeros RZ (1991) In: Meyers HM (ed) Monographs in oral science, vol 15. KARGER, Basel, p 89

  29. Cullity BD (1978) Elements of X-ray Diffraction, 2nd edn. Addison-Wesley Pub Co Inc, Philippines, p 102

    Google Scholar 

  30. Bouhaouss A, Bensaoud A, Laghzizil A, Ferhat M (2001) Int J Inorg Mater 3:437

    Article  CAS  Google Scholar 

  31. Dekker RJ, Bruijn JDD, Stigter M, Barrere F, Layrolle P, Blitterswijk CAV (2005) Biomaterials 26:5231

    Article  CAS  Google Scholar 

  32. Elliott JC (1994) Structure and chemistry of the apatites and other calcium orthophosphates. Studies in Inorganic Chemistry 18, Elsevier, Amsterdam, pp 230–234

Download references

Acknowledgements

This study was supported in part by a Grant-in-aid for Scientific Research from the Ministry of Education, Sports, Culture, Science, and Technology, Japan

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoong Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, Y., Hahm, Y.M., Matsuya, S. et al. Characterization of macroporous carbonate-substituted hydroxyapatite bodies prepared in different phosphate solutions. J Mater Sci 42, 7843–7849 (2007). https://doi.org/10.1007/s10853-007-1629-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-1629-3

Keywords

Navigation