Skip to main content
Log in

Preparation of Biodiesel with Liquid Synergetic Lipases from Rapeseed Oil Deodorizer Distillate

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

To reduce industrial production cost, cheap and easily available rapeseed oil deodorizer distillates were used as feedstock to prepare biodiesel in this study. As a result, liquid forms of Candida rugosa lipase and Rhizopus oryzae lipase (ROL) were functioned as new and effective catalysts with biodiesel yield of 92.63% for 30 h and 94.36% for 9 h, respectively. Furthermore, the synergetic effect between the two lipases was employed to enhance biodiesel yield with a result of 98.16% in 6 h under optimized conditions via response surface methodology. The obtained conversion rate surpassed both yields of the individual two lipases and markedly shortened the reaction time. The resultant optimal conditions were ROL ratio 0.84, water content 46 wt% (w/w), reaction temperature 34 °C, and reaction time 6 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

RODDs:

Rapeseed oil deodorizer distillates

CRL:

Candida rugosa lipase

ROL:

Rhizopus oryzae lipase

RSM:

Response surface methodology

FAME:

Fatty acid methyl ester

FAs:

Fatty acids

FFA:

Free fatty acid

TG:

Triglyceride

MD:

Yeast nutrient media minimal dextrose

BMGY:

Buffered glycerol-complex medium

YPD:

Yeast extract-peptone-dextrose

References

  1. Saluja, R. K., Kumar, V., Sham, R., & Kazmerski, L. (2016). Stability of biodiesel—a review. Renewable and Sustainable Energy Reviews, 62, 866–881.

    Article  CAS  Google Scholar 

  2. Atabani, A. E., Silitonga, A. S., Badruddin, I. A., Mahlia, T. M. I., Masjuki, H. H., & Mekhilef, S. (2012). A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renewable and Sustainable Energy Reviews, 16, 2070–2093.

    Article  Google Scholar 

  3. Su, F., Li, G. L., Zhang, H. J., & Yan, Y. J. (2014). Enhanced performance of Rhizopus oryzae lipase immobilized on hydrophobic carriers and its application in biorefinery of rapeseed oil deodorizer distillate. Bioenergy Research, 7, 935–945.

    Article  CAS  Google Scholar 

  4. Dumont, M. J., & Narine, S. S. (2007). Soapstock and deodorizer distillates from North American vegetable oils: review on their characterization, extraction and utilization. Food Research International, 40, 957–974.

    Article  CAS  Google Scholar 

  5. Jaeger, K. E., & Eggert, T. (2002). Lipases for biotechnology. Current Opinion in Biotechnology, 13, 390–397.

    Article  CAS  Google Scholar 

  6. Kirk, O., Borchert, T. V., & Fuglsang, C. C. (2002). Industrial enzyme applications. Current Opinion in Biotechnology, 13, 345–351.

    Article  CAS  Google Scholar 

  7. Rajendran, A., Palanisamy, A., & Thangavelu, V. (2009). Lipase catalyzed ester synthesis for food processing industries. Brazilian Archives of Biology and Technology, 52, 207–219.

    Article  CAS  Google Scholar 

  8. Gotor-Fernández, V., Brieva, R., & Gator, V. (2006). Lipases: useful biocatalysts for the preparation of pharmaceuticals. Journal of Molecular Catalysis B: Enzymatic, 40, 111–120.

    Article  Google Scholar 

  9. Tran, D. T., Chen, C. L., & Chang, J. S. (2016). Continuous biodiesel conversion via enzymatic transesterification catalyzed by immobilized Burkholderia lipase in a packed-bed bioreactor. Applied Energy, 168, 340–350.

    Article  CAS  Google Scholar 

  10. Tan, T., Lu, J., Nie, K., Deng, L., & Wang, F. (2010). Biodiesel production with immobilized lipase: a review. Biotechnology Advances, 28, 628–634.

    Article  CAS  Google Scholar 

  11. Fujita, Y., Takahashi, S., Ueda, M., Tanaka, A., Okada, H., Morikawa, Y., Kawaguchi, T., Arai, M., Fukuda, H., & Kondo, A. (2002). Direct and efficient production of ethanol from cellulosic material with a yeast strain displaying cellulolytic enzymes. Applied and Environmental Microbiology, 68, 5136–5141.

    Article  CAS  Google Scholar 

  12. Ban, K., Kaieda, M., Matsumoto, T., Kondo, A., & Fukuda, H. (2001). Whole cell biocatalyst for biodiesel fuel production utilizing Rhizopus oryzae cells immobilized within biomass support particles. Biochemical Engineering Journal, 8, 39–43.

    Article  CAS  Google Scholar 

  13. Pedersen, A. T., Nordblad, M., Nielsen, P. M., & Woodley, J. M. (2014). Batch production of FAEE-biodiesel using a liquid lipase formulation. Journal of Molecular Catalysis B: Enzymatic, 105, 89–94.

    Article  Google Scholar 

  14. Chen, X., Du, W., & Liu, D. (2008). Effect of several factors on soluble lipase-mediated biodiesel preparation in the biphasic aqueous-oil systems. World Journal of Microbiology and Biotechnology, 24, 2097–2102.

    Article  CAS  Google Scholar 

  15. Cesarini, S., Diaz, P., & Nielsen, P. M. (2013). Exploring a new, soluble lipase for FAMEs production in water-containing systems using crude soybean oil as a feedstock. Process Biochemistry, 48, 484–487.

    Article  CAS  Google Scholar 

  16. Guan, F. F., Peng, P., Wang, G. L., Yin, T., Peng, Q., Huang, J. J., Guan, G. H., & Li, Y. (2010). Combination of two lipases more efficiently catalyzes methanolysis of soybean oil for biodiesel production in aqueous medium. Process Biochemistry, 45, 1677–1682.

    Article  CAS  Google Scholar 

  17. Ren, H., Du, W., Lv, L., & Liu, D. (2011). Study on free lipase-catalyzed ethanolysis for biodiesel preparation in an oil/water biphasic system. Journal of the American Oil Chemists’ Society, 88, 1551–1555.

    Article  CAS  Google Scholar 

  18. Nielsen, P. M., Rancke-Madsen, A., Holm, H. C., & Burton, R. (2016). Production of biodiesel using liquid lipase formulations. Journal of the American Oil Chemists’ Society, 93, 905–910.

    Article  CAS  Google Scholar 

  19. Gog, A., Roman, M., Toşa, M., Paizs, C., & Irimie, F. D. (2012). Biodiesel production using enzymatic transesterification—current state and perspectives. Renewable Energy, 39, 10–16.

    Article  CAS  Google Scholar 

  20. Su, F., Li, G. L., Fan, Y. L., & Yan, Y. J. (2015). Enhancing biodiesel production via a synergic effect between immobilized Rhizopus oryzae lipase and Novozym 435. Fuel Processing Technology, 137, 298–304.

    Article  CAS  Google Scholar 

  21. Antczak, M. S., Kubiak, A., Antczak, T., & Bielecki, S. (2009). Enzymatic biodiesel synthesis—key factors affecting efficiency of the process. Renewable Energy, 34, 1185–1194.

    Article  Google Scholar 

  22. Lee, J. H., Kim, S. B., Yoo, H. Y., Lee, J. H., Ham, S. O., Park, C., & Kim, S. W. (2013). Co-immobilization of Candida rugosa and Rhyzopus oryzae lipases and biodiesel production. Korean Journal of Chemical Engineering, 30, 1335–1338.

    Article  CAS  Google Scholar 

  23. Li, X., Liu, Z., Wang, G., Pan, D., Jiao, L., & Yan, Y. (2016). Overexpression of Candida rugosa lipase Lip1 via combined strategies in Pichia pastoris. Enzyme and Microbial Technology, 82, 115–124.

    Article  CAS  Google Scholar 

  24. Fang, Z., Xu, L., Pan, D., Jiao, L., Liu, Z., & Yan, Y. (2014). Enhanced production of Thermomyces lanuginosus lipase in Pichia pastoris via genetic and fermentation strategies. Journal of Industrial Microbiology & Biotechnology, 41, 1541–1551.

    Article  CAS  Google Scholar 

  25. Liu, Y., Liu, T., Wang, X., Xu, L., & Yan, Y. (2011). Biodiesel synthesis catalyzed by Burkholderia cenocepacia lipase supported on macroporous resin NKA in solvent-free and isooctane systems. Energy & Fuels, 25, 1206–1212.

    Article  CAS  Google Scholar 

  26. Benjamin, S., & Pandey, A. (1998). Candida rugosa lipases: molecular biology and versatility in biotechnology. Yeast, 14, 1069–1087.

    Article  CAS  Google Scholar 

  27. Guillén, M., Benaiges, M. D., & Valero, F. (2017). Improved ethyl butyrate synthesis catalyzed by an immobilized recombinant Rhizopus oryzae lipase: a comprehensive statistical study by production, reaction rate and yield analysis. Journal of Molecular Catalysis B: Enzymatic. doi:10.1016/j.molcatb.2017.02.010.

    Google Scholar 

  28. Jaeger, K. E., & Reetz, M. T. (1998). Microbial lipases form versatile tools for biotechnology. Trends in Biotechnology, 16, 396.

    Article  CAS  Google Scholar 

  29. Lv, D., Du, W., Zhang, G., & Liu, D. (2010). Mechanism study on NS81006-mediated methanolysis of triglyceride in oil/water biphasic system for biodiesel production. Process Biochemistry, 45, 446–450.

    Article  CAS  Google Scholar 

  30. Huang, J. J., Xia, J., Jiang, W., Li, Y., & Li, J. L. (2015). Biodiesel production from microalgae oil catalyzed by a recombinant lipase. Bioresource Technology, 180, 47–53.

    Article  CAS  Google Scholar 

  31. Xin, C., Wei, D., & Liu, D. H. (2008). Response surface optimization of biocatalytic biodiesel production with acid oil. Biochemical Engineering Journal, 40, 423–429.

    Article  Google Scholar 

  32. Kuo, C. H., Peng, L. T., Kan, S. C., Liu, Y. C., & Shieh, C. J. (2013). Lipase-immobilized biocatalytic membranes for biodiesel production. Bioresource Technology, 145, 229–232.

    Article  CAS  Google Scholar 

  33. Shao, P., Meng, X., He, J., & Sun, P. (2008). Analysis of immobilized Candida rugosa lipase catalyzed preparation of biodiesel from rapeseed soapstock. Food and Bioproducts Processing, 86, 283–289.

    Article  Google Scholar 

  34. Moreno-Pirajàn, J. C., & Giraldo, L. (2011). Study of immobilized Candida rugosa lipase for biodiesel fuel production from palm oil by flow microcalorimetry. Arabian Journal of Chemistry, 4, 55–62.

    Article  Google Scholar 

  35. Kuo, T. C., Shaw, J. F., & Lee, G. C. (2015). Conversion of crude Jatropha curcas seed oil into biodiesel using liquid recombinant Candida rugosa lipase isozymes. Bioresource Technology, 192, 54–59.

    Article  CAS  Google Scholar 

  36. Du, W., Xu, Y. Y., Liu, D. H., & Li, Z. B. (2005). Study on acyl migration in immobilized lipozyme TL-catalyzed transesterification of soybean oil for biodiesel production. Journal of Molecular Catalysis B: Enzymatic, 37, 68–71.

    Article  CAS  Google Scholar 

  37. Li, Z., Li, X., Wang, Y., Wang, Y., Wang, F., & Jiang, J. (2011). Expression and characterization of recombinant Rhizopus oryzae lipase for enzymatic biodiesel production. Bioresource Technology, 102, 9810–9813.

    Article  CAS  Google Scholar 

  38. Tamalampudi, S., Talukder, M. R., Hama, S., Numata, T., Kondo, A., & Fukuda, H. (2008). Enzymatic production of biodiesel from Jatropha oil: a comparative study of immobilized-whole cell and commercial lipases as a biocatalyst. Biochemical Engineering Journal, 39, 185–189.

    Article  CAS  Google Scholar 

  39. Li, X., He, X. Y., Li, Z. L., Wang, Y. D., Wang, C. Y., Shi, H., & Wang, F. (2012). Enzymatic production of biodiesel from Pistacia chinensis bge seed oil using immobilized lipase. Fuel, 92, 89–93.

    Article  CAS  Google Scholar 

  40. Wang, Y. D., Shen, X. Y., Li, Z. L., Li, X., Wang, F., Nie, X. A., & Jiang, J. C. (2010). Immobilized recombinant Rhizopus oryzae lipase for the production of biodiesel in solvent free system. Journal of Molecular Catalysis B: Enzymatic, 67, 45–51.

    Article  CAS  Google Scholar 

  41. Hama, S., Yamaji, H., Fukumizu, T., Numata, T., Tamalampudi, S., Kondo, A., Noda, H., & Fukuda, H. (2007). Biodiesel-fuel production in a packed-bed reactor using lipase-producing Rhizopus oryzae cells immobilized within biomass support particles. Biochemical Engineering Journal, 34, 273–278.

    Article  CAS  Google Scholar 

  42. Yu, X. W., Sha, C., Guo, Y. L., Xiao, R., & Xu, Y. (2013). High-level expression and characterization of a chimeric lipase from Rhizopus oryzae for biodiesel production. Biotechnology for Biofuels, 6, 29.

    Article  CAS  Google Scholar 

  43. Kaieda, M., Samukawa, T., Kondo, A., & Fukuda, H. (2001). Effect of methanol and water contents on production of biodiesel fuel from plant oil catalyzed by various lipases in a solvent-free system. Journal of Bioscience and Bioengineering, 91, 12–15.

    Article  CAS  Google Scholar 

  44. Visioli, L. J., Castilhos, F. D., Cardozo-Filho, L., Mello, B. T. F. D., & Silva, C. D. (2016). Production of esters from soybean oil deodorizer distillate in pressurized ethanol. Fuel Processing Technology, 149, 326–331.

    Article  CAS  Google Scholar 

  45. Yin, X. L., Duan, X. L., You, Q. H., Dai, C. H., Tan, Z. B., & Zhu, X. Y. (2016). Biodiesel production from soybean oil deodorizer distillate using calcined duck eggshell as catalyst. Energy Conversion and Management, 112, 199–207.

    Article  CAS  Google Scholar 

  46. Wang, L., Du, W., Liu, D., Li, L., & Dai, N. (2006). Lipase-catalyzed biodiesel production from soybean oil deodorizer distillate with absorbent present in tert-butanol system. Journal of Molecular Catalysis B: Enzymatic, 43, 29–32.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 31170078), the National High Technology Research and Development Program of China (No 2013AA065805), the Natural Science Foundation of Hubei Province (No. 2015CFA085), and the Fundamental Research Funds for HUST (Nos. 2014NY007 and 2014QN119). The authors thank Ms. Chen Hong, from the Centre of Analysis and Test, Huazhong University of Science and Technology for biodiesel analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunjun Yan.

Electronic supplementary material

ESM 1

(DOC 75 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, L., He, Y., Jiao, L. et al. Preparation of Biodiesel with Liquid Synergetic Lipases from Rapeseed Oil Deodorizer Distillate. Appl Biochem Biotechnol 183, 778–791 (2017). https://doi.org/10.1007/s12010-017-2463-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2463-y

Keywords

Navigation