Skip to main content

Advertisement

Log in

Catechol Removal from Aqueous Media Using Laccase Immobilized in Different Macro- and Microreactor Systems

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Laccase belongs to the group of enzymes that are capable to catalyze the oxidation of phenols. Since the water is only by-product in laccase-catalyzed phenol oxidations, it is ideally “green” enzyme with many possible applications in different industrial processes. To make the oxidation process more sustainable in terms of biocatalyst consumption, immobilization of the enzyme is implemented in to the processes. Additionally, when developing a process, choice of a reactor type plays a significant role in the total outcome.

In this study, the use of immobilized laccase from Trametes versicolor for biocatalytic catechol oxidation was explored. Two different methods of immobilization were performed and compared using five different reactor types. In order to compare different systems used for catechol oxidation, biocatalyst turnover number and turnover frequency were calculated. With low consumption of the enzyme and good efficiency, obtained results go in favor of microreactors with enzyme covalently immobilized on the microchannel surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chen, H., Yao, J., Wang, F., Zhou, Y., Chen, K., Zhuang, R., Choi, M. M. F., & Zaray, G. (2010). Toxicity of three phenolic compounds and their mixtures on the gram-positive bacteria Bacillus subtilis in the aquatic environment. Science of the Total Environment, 408, 1043–1049.

    Article  CAS  Google Scholar 

  2. Michałowicz, J., & Duda, W. (2007). Phenols – sources and toxicity. Polish Journal of Environmental Studies, 16, 347–362.

    Google Scholar 

  3. Shakir, K., Ghoneimy, H. F., Elkafrawy, A. F., Beheir, S. G., & Refaat, M. (2008). Removal of catechol from aqueous solutions by adsorption onto organophilic-bentonite. Journal of Hazardous Materials, 150, 765–773.

    Article  CAS  Google Scholar 

  4. Polak, J., & Jarosz-Wilkolazka, A. (2012). Fungal laccases as green catalysts for dye synthesis. Process Biochemistry, 47, 1295–1307.

  5. Ma, H. L., Kermasha, S., Gaoc, J. M., Borges, R. M., & Yue, X. (2009). Laccase-catalyzed oxidation of phenolic compounds in organic media. Journal of Molecular Catalysis B: Enzymatic, 57, 89–95.

    Article  CAS  Google Scholar 

  6. Dwivedi, U. N., Singh, P., Pandey, V. P., & Kumar, A. (2011). Structure–function relationship among bacterial, fungal and plant laccases. Journal of Molecular Catalysis B: Enzymatic, 68, 117–128.

    Article  CAS  Google Scholar 

  7. Schlosser, D., Grey, R., & Fritsche, W. (1997). Patterns of ligninolytic enzymes in Trametes versicolor. Distri- bution of extra- and intracellular enzyme activities during cultivation on glucose, wheat straw and beech wood. Applied Microbiology and Biotechnology, 47, 412–418.

  8. Zerva, A., Manos, N., Vouyiouka, S., Christakopoulos, P., & Topakas, E. (2016). Bioconversion of biomass-derived phenols catalyzed by Myceliophthora thermophila laccase. Molecules, 21, 550–562.

    Article  Google Scholar 

  9. Arora, D. S., & Sharma, R. K. (2010). Ligninolytic fungal laccases and their biotechnological applications. Applied Biochemistry and Biotechnology, 160, 1760–1788.

  10. Guo, M., Wang, H., Huang, D., Han, Z., Li, Q., Wang, X., & Chen, J. (2014). Amperometric catechol biosensor based on laccase immobilized on nitrogen-doped ordered mesoporous carbon (N-OMC)/PVA matrix. Science and Technology of Advanced Materials, 15, 1–9.

    Article  CAS  Google Scholar 

  11. Cabaj, J., Jędrychowska, A., Zając, D., Krawiec, S., & Sołoducho, J. (2016). Phenolic compounds determination using laccase-based electrode modified with conducting polymer support. International Journal of Electrochemical Science, 11, 609–620.

  12. Majeau, J. A., Brar, S. K., & Tyagi, R. D. (2010). Laccases for removal of recalcitrant and emerging pollutants. Bioresource Technology, 101, 2331–2350.

    Article  CAS  Google Scholar 

  13. D’Annibale, A., Stazi, S. R., Vinciguerra, V., & Giovannozzi Sermanni, G. (2000). Oxirane-immobilized Lentinula edodes laccase: stability and phenolics removal efficiency in olive mill wastewater. Journal of Biotechnology, 77, 265–273.

    Article  Google Scholar 

  14. Duran, N., & Esposito, E. (2000). Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: a review. Applied Catalysis B: Environmental, 28, 83–99.

  15. Brandi, P., D’Annibale, A., Galli, C., Gentili, P., & Pontes, A. S. N. (2006). In search for practical advantages from the immobilisation of an enzyme: the case of laccase. Journal of Molecular Catalysis B: Enzymatic, 41, 61–69.

    Article  CAS  Google Scholar 

  16. Palmieri, G., Giardina, P., & Sannia, G. (2005). Laccase-mediated Remazol brilliant blue R decolorization in a fixed-bed bioreactor. Biotechnology Progress, 21, 1436–1441.

  17. Durán, N., Rosa, M. A., D’Annibale, A., & Gianfreda, L. (2002). Applications of laccases and tyrosinases (phenoloxidases) immobilized on different supports: a review. Enzyme and Microbial Technology, 31, 907–931.

    Article  Google Scholar 

  18. Dodor, D. E., Hwang, H. M., & Ekunwe, S. I. N. (2004). Oxidation of anthracene and benzo [a] pyrene by immobilized laccase from Trametes versicolorEnzyme and Microbial Technology, 35, 210–217.

    Article  CAS  Google Scholar 

  19. Ehlers, G. A., & Rose, P. D. (2005). Immobilized white-rot fungal biodegradation of phenol and chlorinated phenol in trickling packed-bed reactors by employing sequencing batch operation. Bioresource Technology, 96, 1264–1275.

    Article  CAS  Google Scholar 

  20. Mazmanci, M. A., & Ünyayar, A. (2005). Decolourisation of Reactive Black 5 by Funalia trogii immobilised on Luffa cylindrica sponge. Process Biochemistry, 40, 337–342.

  21. Liese, A., Seelbach, K., & Wandrey, C. (2006). Industrial biotransformations (pp. 517–519). Weinheim: Wiley-VCH.

    Book  Google Scholar 

  22. Ehrfeld, W., Hesse, V., & Löwe, H. (2000). Microreactors: new technology for modern chemistry (pp. 1–12). Weinheim: Wiley-VCH.

    Book  Google Scholar 

  23. Stojkovič, G., & Žnidaršič Plazl, P. (2010). Immobilization of yeast cells within microchannels of different materials. Acta Chimica Slovenica, 57, 144–149.

    Google Scholar 

  24. Jurinjak Tušek, A., Tišma, M., Bregović, V., Pričar, A., Kurtanjek, Ž., & Zelić, B. (2013). Enhancement of phenolic compounds oxidation using laccase from Trametes versicolor in a microreactor. Biotechnology and Bioprocess Engineering, 18, 686–696.

  25. Tišma, M. (2008). Laccase form Trametes versicolor catalysed phenolic compound oxidations in different types of reactors. Croatia: MS Thesis, University of Zagreb.

    Google Scholar 

  26. Šalić, A., Pindrić, K., & Zelić, B. (2013). Bioproduction of food additives hexanal and hexanoic acid in a microreactor. Applied Biochemistry and Biotechnology, 171, 2273–2284.

    Article  Google Scholar 

  27. Šalić, A., Faletar, P., & Zelić, B. (2013). NAD+ regeneration in a microreactor using permeabilized baker’s yeast cells. Biochemical Engineering Journal, 77, 88–96.

  28. Šalić, A., Pindrić, K., Hojnik Podrepšek, G., Leitgeb, M., & Zelić, B. (2013). NADH oxidation in a microreactor catalysed by ADH immobilised on γ-Fe2O3 nanoparticles. Green Process Synth, 2, 569–578.

  29. Šalić, A., Pindrić, K., Hojnik Podrepšek, G., Novosel, N., Leitgeb, M., & Zelić, B. (2016). NADH oxidation in a microreactor with an oscillating magnetic field. Journal of Flow Chemistry, 6, 27–32.

    Article  Google Scholar 

  30. de Souza Bezerra, T. M., Bassan, J. C., de Oliveira Santos, V. T., Ferraz, A., & Monti, R. (2015). Covalent immobilization of laccase in green coconut fiber and use in clarification of apple juice. Process Biochemistry, 50, 417–423.

  31. Gianfreda, L., Sannino, F., Rao, M. A., & Bollag, J. M. (2003). Oxidative transformation of phenols in aqueous mixtures. Water Research, 37, 3205–3215.

  32. Chakroun, H., Bouaziz, M., Dhouib, A., & Sayadi, S. (2012). Enzymatic oxidative transformation of phenols by Trametes trogii laccases. Environmental Technology, 33, 1977–1985.

    Article  CAS  Google Scholar 

  33. Minussi, R. C., Miranda, M. A., Silva, J. A., Ferreira, C. V., Aoyama, H., Marangoni, S., Rotilio, D., Pastore, G. M., & Duran, N. (2007). urification, characterization and application of laccase from Trametes versicolor for colour and phenolic removal of olive mill wastewater in the presence of 1- hydroxybenzotriazole. African Journal of Biotechnol, 6, 1248–1254.

  34. Zille, A., Gornacka, B., Rehorek, A., & Cavaco-Paulo, A. (2005). Degradation of azo dyes by Trametes villosa laccase over long periods of oxidative conditions. Applied and Environmental Microbiology, 71, 6711–6718.

  35. Aktaş, N., & Tanyolaç, A. (2003). Kinetics of laccase-catalyzed oxidative polymerization of catechol. Journal of Molecular Catalysis B: Enzymatic, 22, 61–69.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Zelić.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tušek, A.J., Šalić, A. & Zelić, B. Catechol Removal from Aqueous Media Using Laccase Immobilized in Different Macro- and Microreactor Systems. Appl Biochem Biotechnol 182, 1575–1590 (2017). https://doi.org/10.1007/s12010-017-2419-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2419-2

Keywords

Navigation