Skip to main content
Log in

High Cell Density Process for Constitutive Production of a Recombinant Phytase in Thermotolerant Methylotrophic Yeast Ogataea thermomethanolica Using Table Sugar as Carbon Source

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The yeast Ogataea thermomethanolica has recently emerged as a potential host for heterologous protein expression at elevated temperature. To evaluate the feasibility of O. thermomethanolica as heterologous host in large-scale fermentation, constitutive production of fungal phytase was investigated in fed-batch fermentation. The effect of different temperatures, substrate feeding strategies, and carbon sources on phytase production was investigated. It was found that O. thermomethanolica can grow in the temperature up to 40 °C and optimal at 34 °C. However, the maximum phytase production was observed at 30 °C and slightly decreased at 34 °C. The DOT stat control was the most efficient feeding strategy to obtain high cell density and avoid by-product formation. The table sugar can be used as an alternative substrate for phytase production in O. thermomethanolica. The highest phytase activity (134 U/mL) was obtained from table sugar at 34 °C which was 20-fold higher than batch culture (5.7 U/mL). At a higher cultivation temperature of 38 °C, table sugar can be used as a low-cost substrate for the production of phytase which was expressed with an acceptable yield (85 U/mL). Lastly, the results from this study reveal the industrial favorable benefits of employing O. thermomethanolica as a host for heterologous protein production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Haefner, S., Knietsch, A., Scholten, E., Braun, J., Lohscheidt, M., & Zelder, O. (2005). Biotechnological production and applications of phytases. Applied Microbiology and Biotechnology, 68(5), 558–597.

    Article  Google Scholar 

  2. Promdonkoy, P., Tang, K., Sornlake, W., Harnpicharnchai, P., Kobayashi, R. S., Ruanglek, V., & Tanapongpipat, S. (2009). Expression and characterization of Aspergillus thermostable phytases in Pichia pastoris. FEMS Microbiology Letters, 290(1), 18–24.

    Article  CAS  Google Scholar 

  3. Tanapongpipat, S., Promdonkoy, P., Watanabe, T., Tirasophon, W., Roongsawang, N., Chiba, Y., & Eurwilaichitr, L. (2012). Heterologous protein expression in Pichia thermomethanolica BCC16875, a thermotolerant methylotrophic yeast and characterization of N-linked glycosylation in secreted protein. FEMS Microbiology Letters, 334(2), 127–134.

    Article  CAS  Google Scholar 

  4. Harnpicharnchai, P., Promdonkoy, P., Sae-Tang, K., Roongsawang, N., & Tanapongpipat, S. (2014). Use of the glyceraldehyde-3-phosphate dehydrogenase promoter from a thermotolerant yeast, Pichia thermomethanolica, for heterologous gene expression, especially at elevated temperature. Annals Microbiology, 64, 1457–1462.

    Article  CAS  Google Scholar 

  5. Promdonkoy, P., Tirasophon, W., Roongsawang, N., Eurwilaichitr, L., & Tanapongpipat, S. (2014). Methanol-inducible promoter of thermotolerant methylotrophic yeast Ogataea thermomethanolica BCC16875 potential for production of heterologous protein at high temperatures. Current Microbiology, 69(2), 143–148.

    Article  CAS  Google Scholar 

  6. Roongsawang, N., Puseenam, A., Kitikhun, S., Sae-Tang, K., Harnpicharnchai, P., Ohashi, T., & Tanapongpipat, S. (2016). A novel potential signal peptide sequence and overexpression of ER-resident chaperones enhance heterologous protein secretion in thermotolerant methylotrophic yeast Ogataea thermomethanolica. Applied Biochemistry and Biotechnology, 178(4), 710–724.

    Article  CAS  Google Scholar 

  7. Bollok, M., Resina, D., Valero, F., & Ferrer, P. (2009). Recent patents on the Pichia pastoris expression system: expanding the toolbox for recombinant protein production. Recent Patents on Biotechnology, 3(3), 192–201.

    Article  CAS  Google Scholar 

  8. Garcia-Ortega, X., Ferrer, P., Montesinos, J. L., & Valero, F. (2013). Fed-batch operational strategies for recombinant Fab production with Pichia pastoris using the constitutive GAP promoter. Biochemical Engineering Journal, 79, 172–181.

    Article  CAS  Google Scholar 

  9. Guan, B., Chen, F., Lei, J., Li, Y., Duan, Z., Zhu, R., & Jin, J. (2013). Constitutive expression of a rhIL-2-HSA fusion protein in Pichia pastoris using glucose as carbon source. Applied Biochemistry and Biotechnology, 171(7), 1792–1804.

    Article  CAS  Google Scholar 

  10. Wang, X., Sun, Y., Ke, F., Zhao, H., Liu, T., Xu, L., & Yan, Y. (2012). Constitutive expression of Yarrowia lipolytica lipase LIP2 in Pichia pastoris using GAP as promoter. Applied Biochemistry and Biotechnology, 166(5), 1355–1367.

    Article  CAS  Google Scholar 

  11. Wang, Q., Du, W., Weng, X.-Y., Liu, M.-Q., Wang, J.-K., & Liu, J.-X. (2015). Recombination of thermo-alkalistable, high xylooligosaccharides producing endo-xylanase from Thermobifida fusca and expression in Pichia pastoris. Applied Biochemistry and Biotechnology, 175(3), 1318–1329.

    Article  CAS  Google Scholar 

  12. Heo, J. H., Hong, W. K., Cho, E. Y., Kim, M. W., Kim, J. Y., Kim, C. H., & Kang, H. A. (2003). Properties of the Hansenula polymorpha-derived constitutive GAP promoter, assessed using an HSA reporter gene. FEMS Yeast Research, 4(2), 175–184.

    Article  CAS  Google Scholar 

  13. Waterham, H. R., Digan, M. E., Koutz, P. J., Lair, S. V., & Cregg, J. M. (1997). Isolation of the Pichia pastoris glyceraldehyde-3-phosphate dehydrogenase gene and regulation and use of its promoter. Gene, 186(1), 37–44.

    Article  CAS  Google Scholar 

  14. Döring, F., Klapper, M., Theis, S., & Daniel, H. (1998). Use of the glyceraldehyde-3-phosphate dehydrogenase promoter for production of functional mammalian membrane transport proteins in the yeast Pichia pastoris. Biochemical and Biophysical Research Communications, 250(2), 531–535.

    Article  Google Scholar 

  15. Delroisse, J. M., Dannau, M., Gilsoul, J. J., El Mejdoub, T., Destain, J., Portetelle, D., & Vandenbol, M. (2005). Expression of a synthetic gene encoding a Tribolium castaneum carboxylesterase in Pichia pastoris. Protein Expression and Purification, 42(2), 286–294.

    Article  CAS  Google Scholar 

  16. Zhang, A. L., Zhang, T. Y., Luo, J. X., Chen, S. C., Guan, W. J., Fu, C. Y., & Li, H. L. (2007). Constitutive expression of human angiostatin in Pichia pastoris by high-density cell culture. Journal of Industrial Microbiology and Biotechnology, 34(2), 117–122.

    Article  Google Scholar 

  17. Riesenberg, D., & Guthke, R. (1999). High-cell-density cultivation of microorganisms. Applied Microbiology and Biotechnology, 51(4), 422–430.

    Article  CAS  Google Scholar 

  18. Jahic, M., Wallberg, F., Bollok, M., Garcia, P., & Enfors, S.-O. (2003). Temperature limited fed-batch technique for control of proteolysis in Pichia pastoris bioreactor cultures. Microbial Cell Factories, 2, 6.

    Article  Google Scholar 

  19. Davis, R., Duane, G., Kenny, S. T., Cerrone, F., Guzik, M. W., Babu, R. P., & O’Connor, K. E. (2015). High cell density cultivation of Pseudomonas putida KT2440 using glucose without the need for oxygen enriched air supply. Biotechnology and Bioengineering, 112(4), 725–733.

    Article  CAS  Google Scholar 

  20. Castan, A., & Enfors, S.-O. (2000). Characteristics of a DO-controlled fed-batch culture of Escherichia coli. Bioprocess Engineering, 22, 509–515.

    Article  CAS  Google Scholar 

  21. Renouf, M. A., Wegener, M. K., & Nielsen, L. K. (2008). An environmental life cycle assessment comparing Australian sugarcane with US corn and UK sugar beet as producers of sugars for fermentation. Biomass and Bioenergy, 32(12), 1144–1155.

    Article  CAS  Google Scholar 

  22. Abdel-Banat, B. M. A., Hoshida, H., Ano, A., Nonklang, S., & Akada, R. (2010). High-temperature fermentation: how can processes for ethanol production at high temperatures become superior to the traditional process using mesophilic yeast? Applied Microbiology and Biotechnology, 85(4), 861–867.

    Article  CAS  Google Scholar 

  23. Bruschi, M., Krömer, J. O., Steen, J. A., & Nielsen, L. K. (2014). Production of the short peptide surfactant DAMP4 from glucose or sucrose in high cell density cultures of Escherichia coli BL21(DE3). Microbial Cell Factories, 13, 99.

    Article  Google Scholar 

  24. Limtong, S., Srisuk, N., Yongmanitchai, W., Yurimoto, H., & Nakase, T. (2008). Ogataea chonburiensis sp. nov. and Ogataea nakhonphanomensis sp. nov., thermotolerant, methylotrophic yeast species isolated in Thailand, and transfer of Pichia siamensis and Pichia thermomethanolica to the genus Ogataea. International Journal of Systematic and Evolutionary Microbiology, 58(1), 302–307.

    Article  CAS  Google Scholar 

  25. Eilert, E., Hollenberg, C. P., Piontek, M., & Suckow, M. (2012). The use of highly expressed FTH1 as carrier protein for cytosolic targeting in Hansenula polymorpha. Journal of Biotechnology, 159(3), 172–176.

    Article  CAS  Google Scholar 

  26. Jahic, M., Rotticci-Mulder, J., Martinelle, M., Hult, K., & Enfors, S.-O. (2002). Modeling of growth and energy metabolism of Pichia pastoris producing a fusion protein. Bioprocess and Biosystems Engineering, 24(6), 385–393.

    Article  CAS  Google Scholar 

  27. Antimanon, S., Charoenrat, T., Kocharin, K., Tanapongpipat, S., & Roongsawang, N. (2016). Growth and recombinant phytase production of Ogataea thermomethanolica. Thai Science and Technology Journal, 24(1), 49–63.

    Google Scholar 

  28. Engelen, A. J., van der Heeft, F. C., Randsdorp, P. H., & Smit, E. L. (1994). Simple and rapid determination of phytase activity. Journal of AOAC International, 77(3), 760–764.

    CAS  Google Scholar 

  29. Bradford, M. (1976). Rapid and sensitive method for quantification of microgram quantities of protein utilizing principle of protein-dye-binding. Analytical Biochemistry, 72(1-2), 248–254.

    Article  CAS  Google Scholar 

  30. Cos, O., Ramón, R., Montesinos, J. L., & Valero, F. (2006). Operational strategies, monitoring and control of heterologous protein production in the methylotrophic yeast Pichia pastoris under different promoters: a review. Microbial Cell Factories, 5(1), 17.

    Article  Google Scholar 

  31. Raimondi, S., Zanni, E., Amaretti, A., Palleschi, C., Uccelletti, D., & Rossi, M. (2013). Thermal adaptability of Kluyveromyces marxianus in recombinant protein production. Microbial Cell Factories, 12(1), 34.

    Article  CAS  Google Scholar 

  32. Zhong, Y., Yang, L., Guo, Y., Fang, F., Wang, D., Li, R., & Xiao, W. (2014). High-temperature cultivation of recombinant Pichia pastoris increases endoplasmic reticulum stress and decreases production of human interleukin-10. Microbial Cell Factories, 13(1), 163..

    Article  Google Scholar 

  33. Zhang, Y., Liu, R., & Wu, X. (2007). The proteolytic systems and heterologous proteins degradation in the methylotrophic yeast Pichia pastoris. Annals of Microbiology, 57(4), 553–560.

    Article  CAS  Google Scholar 

  34. Inan, M., & Meagher, M. M. (2001). The effect of ethanol and acetate on protein expression in Pichia pastoris. Journal of Bioscience and Bioengineering, 92(4), 337–341.

    Article  CAS  Google Scholar 

  35. Enfors, S.-O., & Haggstrom, L. (2000). Bioprocess technology: fundamentals and applications. Syockholm: Royal Institute of Technology.

    Google Scholar 

  36. Charoenrat, T., Ketudat-Cairns, M., Jahic, M., Veide, A., & Enfors, S. O. (2006). Increased total air pressure versus oxygen limitation for enhanced oxygen transfer and product formation in a Pichia pastoris recombinant protein process. Biochemical Engineering Journal, 30(2), 205–211.

    Article  CAS  Google Scholar 

  37. De Maré, L., Andersson, L., & Hagander, P. (2003). Probing control of glucose feeding in Vibrio cholerae cultivations. Bioprocess and Biosystems Engineering, 25(4), 221–228.

    Article  Google Scholar 

  38. Çalık, P., Ata, Ö., Güneş, H., Massahi, A., Boy, E., Keskin, A., & Özdamar, T. H. (2015). Recombinant protein production in Pichia pastoris under glyceraldehyde-3-phosphate dehydrogenase promoter: from carbon source metabolism to bioreactor operation parameters. Biochemical Engineering Journal, 95, 20–36.

    Article  Google Scholar 

  39. Wetzel, D., Müller, J. M., Flaschel, E., Friehs, K., & Risse, J. M. (2016). Fed-batch production and secretion of streptavidin by Hansenula polymorpha: evaluation of genetic factors and bioprocess development. Journal of Biotechnology, 225, 3–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Philip J. Shaw for critically editing the manuscript. Financial support (P-13-50136, P-14-50939) from the National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Thailand, is greatly appreciated. We also acknowledge Central Scientific Instrument Center, Faculty of Science and Technology, Thammasat University, Thailand, for kindly supporting the use of their HPLC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niran Roongsawang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charoenrat, T., Antimanon, S., Kocharin, K. et al. High Cell Density Process for Constitutive Production of a Recombinant Phytase in Thermotolerant Methylotrophic Yeast Ogataea thermomethanolica Using Table Sugar as Carbon Source. Appl Biochem Biotechnol 180, 1618–1634 (2016). https://doi.org/10.1007/s12010-016-2191-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2191-8

Keywords

Navigation