Skip to main content
Log in

Aspergillus fumigatus Produces Two Arabinofuranosidases From Glycosyl Hydrolase Family 62: Comparative Properties of the Recombinant Enzymes

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The genes of two α-l-arabinofuranosidases (AbfI and II) from family GH 62 have been identified in the genome of Aspergillus fumigatus wmo. Both genes have been expressed in Pichia pastoris and the enzymes have been purified and characterized. AbfI is composed of 999 bp, does not contain introns and codes for a protein (ABFI) of 332 amino acid residues. abfII has 1246 bp, including an intron of 51 bp; the protein ABFII has 396 amino acid residues; it includes a family 1 carbohydrate-binding module (CBM) in the N-terminal region, followed by a catalytic module. The sequence of ABFI and the catalytic module of ABFII show a 79 % identity. Both enzymes are active on p-nitrophenyl α-l-arabinofuranoside (pNPAra) with KM of 94.2 and 3.9 mM for ABFI and II, respectively. Optimal temperature for ABFI is 37 °C and for ABFII 42 °C, while the pH optimum is about 4.5 to 5 for both enzymes. ABFII shows a higher thermostability. When assayed using natural substrates, both show higher activity over rye arabinoxylan as compared to wheat arabinoxylan. ABFII only is active on sugar beet pulp arabinan and both are inactive towards debranched arabinan. The higher thermostability, higher affinity for pNPAra and wider activity over natural substrates shown by ABFII may be related to the presence of a CBM. The availability of the recombinant enzymes may be useful in biotechnological applications for the production of arabinose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Seri, K., Sanai, K., Matsuo, N., Kawakubo, K., Xue, C., & Inoue, S. (1996). l-Arabinose selectively inhibits intestinal sucrase in an uncompetitive manner and suppresses glycemic response after sucrose ingestion in animals. Metabolism, 45, 1368–1374.

    Article  CAS  Google Scholar 

  2. Wong, D. W. S. (2008). Enzymatic deconstruction of backbone structures of the ramified regions in pectins. Protein Journal, 27, 30–42.

    Article  CAS  Google Scholar 

  3. Wong, D. W. S., Chan, V. J., & Batt, S. B. (2008). Cloning and characterization of a novel exo-α-1,5-l-arabinanase gene and the enzyme. Applied Microbiology and Biotechnology, 79, 941–949.

    Article  CAS  Google Scholar 

  4. De La Mare, M., Guais, O., Bonnin, E., Weber, J., & Francois, J. M. (2013). Molecular and biochemical characterization of three GH62 α-l-arabinofuranosidases from the soil deuteromycete Penicillium funiculosum. Enzyme and Microbial Technology, 53, 351–358.

    Article  Google Scholar 

  5. Numan, M. T., & Bhosle, N. B. (2006). α-l-Arabinofuranosidases: the potential applications in biotechnology. Journal of Industrial Microbiology and Biotechnology, 33, 247–260.

    Article  CAS  Google Scholar 

  6. Cantarel, B. L., Coutinho, P. M., Rancurel, C., Bernard, T., Lombard, V., & Henrissat, B. (2009). The carbohydrate-active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Research, 37, D233–D238.

    Article  CAS  Google Scholar 

  7. Couturier, M., Haon, M., Coutinho, P. M., Henrissat, B., Lesage-Meessen, L., & Berrin, J.-G. (2011). Podospora anserine hemicellulases potentiate the Trichoderma reesei secretome for saccharification of lignocellulosic biomass. Applied and Environmental Microbiology, 77, 237–246.

    Article  CAS  Google Scholar 

  8. Siguier, B., Haon, M., Nahoum, V., Marcellin, M., Burlet-Schiltz, O., Coutinho, P. M., Henrissat, B., Mourey, L., O’Donohue, M. J., Berrin, J.-G., Tranier, S., & Dumon, C. (2014). First structural insights into α-l-arabinofuranosidases from the two GH62 glycoside hydrolase subfamilies. Journal of Biological Chemistry, 289, 5261–5273.

    Article  CAS  Google Scholar 

  9. Maehara, T., Fujimoto, Z., Ichinose, H., Michikawa, M., Harazono, K., & Kaneko, S. (2014). Crystal structure and characterization of the glycoside hydrolase family 62 α-l-arabinofuranosidase from Streptomyces coelicolor. Journal of Biological Chemistry, 289, 7962–7972.

    Article  CAS  Google Scholar 

  10. Wang, W., Mai-Gisondi, G., Stogios, P. J., Kaur, A., Xu, X., Cui, H., Turunen, O., Savchenko, A., & Master, E. R. (2014). Elucidation of the molecular basis for arabinoxylan-debranching activity of a thermostable family GH62 α-l-arabinofuranosidase from Streptomyces thermoviolaceus. Applied and Environmental Microbiology, 80, 5317–5329.

    Article  Google Scholar 

  11. Henrissat, B., & Bairoch, A. (1996). Updating the sequence-based classification of glycosyl hydrolases. Biochemical Journal, 316, 695–696.

    Article  Google Scholar 

  12. Rosa, L., Ravanal, M. C., Mardones, W., & Eyzaguirre, J. (2013). Characterization of a recombinant α-glucuronidase from Aspergillus fumigatus. Fungal Biology, 117, 380–387.

    Article  CAS  Google Scholar 

  13. Mandels, M., & Weber, J. (1969). The production of cellulases. Advances in Chemistry Series, 5, 391–414.

    Article  Google Scholar 

  14. Park, B. H., Karpinets, T. V., Syed, M. H., Leuze, M. R., & Uberbacher, E. C. (2010). CAZymes analysis toolkit (CAT): web service for searching and analyzing carbohydrate-active enzymes in a newly sequenced organism using CAZy database. Glycobiology, 20, 1574–1584.

    Article  CAS  Google Scholar 

  15. Nielsen, H., Engelbrecht, J., Brunak, S., & von Heijne, G. (1997). A neural network method for identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. International Journal of Neural Systems, 8, 581–599.

    Article  CAS  Google Scholar 

  16. Bollag, D. M., & Edelstein, S. J. (1991). Protein methods. NY: Wiley-Liss.

    Google Scholar 

  17. McIlvaine, T. C. (1921). A buffer solution for colorimetric comparison. Journal of Biological Chemistry, 49, 183–186.

    CAS  Google Scholar 

  18. Cubero, B., & Scazzochio, C. (1994). Two different, adjacent and divergent zinc finger-binding sites are necessary for CREA-mediated carbon catabolite repression in the proline gene cluster of Aspergillus nidulans. The EMBO Journal, 13, 407–415.

    CAS  Google Scholar 

  19. van Peij, N. N., Visser, J., & de Graaff, L. H. (1998). Isolation and analysis of XlnR, encoding a transcriptional activator co-ordinating xylanolytic expression in Aspergillus niger. Molecular Microbiology, 27, 131–142.

    Article  Google Scholar 

  20. Denison, S. H. (2000). pH regulation of gene expression in fungi. Fungal Genetics and Biology, 29, 61–71.

    Article  CAS  Google Scholar 

  21. Hashimoto, K., Yoshida, M., & Hasumi, K. (2011). Isolation and characterization of CcAbf62A, a GH62 α-l-arabinofuranosidase, from the basidiomycete Coprinopsis cinerea. Bioscience, Biotechnology, and Biochemistry, 75, 342–345.

    Article  CAS  Google Scholar 

  22. Kaur, A. P., Nocekm, B. P., Xum, X., Lowdenm, M. J., Leyvam, J. F., Stogiosm, P. J., Cuim, H., Di Leo, R., Powlowski, J., Tsang, A., & Savchenko, A. (2015). Functional and structural diversity in GH62 α-l-arabinofuranosidases from the thermophilic fungus Scytalidium thermophilum. Microbial Biotechnology, 8, 419–433.

    Article  CAS  Google Scholar 

  23. Bauer, S., Vasu, P., Persson, S., Mort, A. J., & Somerville, C. R. (2006). Development and application of a suite of polysaccharide-degrading enzymes for analyzing plant cell walls. Proceedings of the National Academy of Sciences of the United States of America, 103, 11417–11422.

    Article  CAS  Google Scholar 

  24. Sakamoto, T., Ogura, A., Inui, M., Tokuda, S., Hosokawa, S., Ihara, H., & Kasai, N. (2011). Identification of a GH62 α-l-arabinofuranosidase specific for arabinoxylan produced by Penicillium chrysogenum. Applied Microbiology and Biotechnology, 90, 137–146.

    Article  CAS  Google Scholar 

  25. Guillen, D., Sanchez, S., & Rodriguez-Sanoja, R. (2010). Carbohydrate-binding domains: multiplicity of biological roles. Applied Microbiology and Biotechnology, 85, 1241–1249.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by grants from the Fondo Nacional de Ciencia y Tecnología (FONDECYT) (1130180), and Universidad Andrés Bello (DI-478-14/R and DI-31-12/R).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime Eyzaguirre.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Highlights

The gene coding for two GH 62 arabinofuranosidases (abfI and II) have been sequenced.

Both genes have been heterologously expressed in Pichia pastoris.

The enzymes (ABFI and II) have been purified and characterized.

Both enzymes belong to sub-family GH 62-1, but ABFII possesses a carbohydrate-binding module.

ABFII shows higher stability and broader substrate specificity.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Fig. S1

Nucleotide sequence of abfI and amino acid sequence of ABFI. The translation start and termination codons are in bold. (DOCX 99 kb)

Fig. S2

Nucleotide sequence of abfII and amino acid sequence of ABFII. The translation start and termination codons are in bold. The intron sequence is in small letters. (DOCX 19 kb)

Fig. S3

CLUSTAL W alignment of the amino acid sequences of ABFI and of ABFII. The sequence of the CBM of ABFII is underlined. The catalytic residues are boxed. Vertical lines show the end of the signal peptides as predicted by SignalP. (DOCX 43 kb)

Fig. S4

Promoter sequences of the abfI (A) and abfII (B) genes. The TATA box of abfI is highlighted. (DOCX 146 kb)

Fig. S5

Multiple sequence alignment of a set of fungal GH 62 ABFs. The alignment was performed with CLUSTAL Omega. The catalytic amino acids are boxed. The sequences are from: Aspergillus nidulans (EAA59562); Aspergillus niger (CAK38069); Aspergillus sojae (BAA 85252); Aspergillus tubingensis (CAB01408); Bipolaris zeicola (AAG42252); Chrysosporium lucknowense (AED84983); Penicillium capsulatum (CAM07245); Penicillium chrysogenum (BAG71682); Podospora anserina (CAP62366); Trichoderma reesei (AAP57750); Ustilago maydis (XP_011391032); Coprinopsis cinerea (AB557888); Scytalidium thermophilum (AbfA, AHZ56658); Scytalidium thermophilum (AbfC, AHZ56660); Penicillium funiculosum (abf62a, b and c; De La Mare et al. 2013); ABFI (this work; KU160789); ABFII (this work; KU160799) (DOCX 30 kb)

Table S1

(DOCX 31 kb)

Table S2

(DOCX 32 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez, R., Eyzaguirre, J. Aspergillus fumigatus Produces Two Arabinofuranosidases From Glycosyl Hydrolase Family 62: Comparative Properties of the Recombinant Enzymes. Appl Biochem Biotechnol 179, 143–154 (2016). https://doi.org/10.1007/s12010-016-1984-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-1984-0

Keywords

Navigation