Skip to main content
Log in

Enzymatic Deconstruction of Backbone Structures of the Ramified Regions in Pectins

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

The pectic enzymes are a diverse group of enzymes that collectively degrade pectin, a mixture of highly heterogeneous and branched polysaccharides rich in d-galacturonic acids forming a major component of the primary cell wall of plants. This review covers key enzymes that function to deconstruct the “ramified region” of pectin. The enzymes include glycoside hydrolases and polysaccharide lyases that degrade complex pectic domains consisting of rhamnogalacturonans, xylogalacturonans, and other heterogeneous polymers. The chemical nature of the pectic substrates for the enzymes is presented. The biochemical properties of the enzymes, the mechanisms of enzyme actions, and related structures and functions, are described. Applications of these enzymes in fruit juice processing and in the production of bioactive compounds, as well as their technological relevance to the deconstruction of cell wall structures for biomass conversion are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AcefA:

3-C-carboxyl-5-deoxy-l-xylofuranosyl

AGP:

Arabinogalactan-proteins

Apif :

Apiofuranosyl

Araf :

Arabinofuranosyl

Arap :

Arabinopyranosyl

CBD:

Carbohydrate binding domain

DE:

Degree of esterification

ΔGalA:

4-Deoxy-β-l-threo-hex-4-enepyranosyl uronic acid

Dhap :

3-Deoxy-d-lyxo-2-heptulopyranosylaric acid

Fucp :

Fucopyranosyl

GalA:

α-d-galacturonic acid

Galp :

Galactopyranosyl

GalpA:

α-d-galactopyranosyluronic acid

GlcpA:

Glucopyranosyluronic acid

HG:

Homogalacturonan

HMR:

Modified hairy region

Kdop :

2-Keto-3-deoxy-d-manno-octulopyranosylonic acid

MeFucp :

2-O-Methylfucopyranosyl

2-O-MeXylp :

2-O-Methyl-xylopyranosyl

exoPG:

exo-Polygalacturonase

poly-GalA:

Polygalacturonic acid

RG-I:

Rhamnogalacturonan I

RG-II:

Rhamnogalacturonan II

Rhap :

α-l-rhamnopyranose

XGA:

Xylogalacturonan

References

  1. Grassin C, Fauquembergue P (1996) Progress in Biotechnology 14: Pectins and pectinases.In: Visser J, Voragen AGJ (eds), Elservier, Amsterdam, pp 453–463

  2. Ratto M, Viikari L (1996) Progress in Biotechnology 14: Pectins and pectinases, Visser J, Voragen AGJ (eds), Elservier, Amsterdam, pp 979–982

  3. Fishman ML, Chau HK, Kolpak F, Brady J (2001) J Agric Food Chem 49:4494–4501

    Article  CAS  Google Scholar 

  4. Sakamoto T, Sakai T (1995) Phytochemistry 39:821–823

    Article  CAS  Google Scholar 

  5. Bacic A, Harris PJ, Stone BA (1988) Biochem Plant 14:297–371

    CAS  Google Scholar 

  6. Huisman MMH, Fransen CTM, Kamerling JP, Vliegenthart JFG, Schols HA, Voragen AGJ (2001) Biopolymers 58:279–294

    Article  CAS  Google Scholar 

  7. Ishii T (1997) Plant Physiol 113:1265–1272

    Article  CAS  Google Scholar 

  8. Thibault J -F, Renard CMGC, Axelos MAV, Roger P, Crepeau M-J (1993) Carbohydr Res 238:271–286

    Article  CAS  Google Scholar 

  9. Oechslin R, Lutz MV, Amado R (2003) Carbohydr polym 51:301–310

    Article  CAS  Google Scholar 

  10. Nakamura A, Furuta H, Maeda H, Takeo T, Nagamatsu Y (2002) Biosci Biotechnol Biochem 66:1155–1158

    Article  CAS  Google Scholar 

  11. Le Goff A, Renard CMGC, Bonnin E, Thibault J-F (2001) Carbohydr polym 45:325–334

    Article  Google Scholar 

  12. Kikuchi A, Edashige Y, Ishii T, Satoh S (1996) Planta 200:369–372

    Article  CAS  Google Scholar 

  13. Schols HA, Vierhuis E, Bakx EJ, Voragen AGJ (1995) Carbohydr Res 275:343–360

    Article  CAS  Google Scholar 

  14. Hart DA, Kindel PK (1970) Biochem J 116:569–579

    CAS  Google Scholar 

  15. Longland JM, Fry SC, Trewavas AJ (1989) Plant Physiol 90:972–976

    CAS  Google Scholar 

  16. Lau JM, McNeil M, Darvill AG, Albersheim P (1985) Carbohydr Res 137:111–125

    Article  CAS  Google Scholar 

  17. Renard CMGC, Lahaye M, Mutter M, Voragen FGJ, Thibault J-F (1998) Carbohydr Res 305:271–280

    Article  Google Scholar 

  18. Komalavilas P, Mort AJ (1989) Carbohydr Res 189:261–272

    Article  CAS  Google Scholar 

  19. Ralet M-C, Thibault J-F (1994) Carbohydr Res 260:283–296

    Article  CAS  Google Scholar 

  20. Ros JM, Schols HA, Voragen AGJ (1996) Carbohydr Res 282:271–284

    Article  CAS  Google Scholar 

  21. De Vries JA, Rombouts FM, Voragen AGJ, Pilnik W (1982) Carbohydr Polym 2:25–33

    Article  Google Scholar 

  22. Jarvis MC, Hall MA, Threlfall DR, Friend J (1981) Planta 152: 93–100

    Article  CAS  Google Scholar 

  23. Aspinall GO, Cottrell IW, Matheson NK (1972) Can J Chem. 49:1019–1022

    Article  Google Scholar 

  24. Ponder GR, Richards GN (1997) Carbohydr Polym 34:251–261

    Article  CAS  Google Scholar 

  25. Fincher GB, Stone BA, Clarke AE (1983) Ann Rev Plant Physiol 34:47–70

    Article  CAS  Google Scholar 

  26. Majewska-Sawka A, Nothnagel EA (2000) Plant Physiol 122:3–9

    Article  CAS  Google Scholar 

  27. O’Neill MA, Warrenfeltz D, Kates K, Pellerin P, Doco T, Darvill AG, Albersheim P (1996) J Biol Chem 271:22923–22930

    Article  CAS  Google Scholar 

  28. Du Penhoat CH, Gey C, Pellerin P, Perez S (1999) J Biomol NMR 14:253–271

    Article  Google Scholar 

  29. Vidal S, Doco T, Williams P, Pellerin P, York WS, O’Neill MA, Glushka J, Darvill AG, Albersheim P (2000) Carbohydr Res 326:277–294

    Article  CAS  Google Scholar 

  30. Whitcombe A, O’Neill MA, Steffian W, Albersheim P, Darvill AG (1995) Carbohydr Res 271:15–29

    Article  CAS  Google Scholar 

  31. Pellerin P, Doco T, Vidal S, Williams P, Brillouet J-M, O’Neill MA (1996) Carbohydr Res 290:183–197

    Article  CAS  Google Scholar 

  32. Schols HA, Posthumus MA, Voragen AGJ (1990) Carbohydr Res 206:117–129

    Article  CAS  Google Scholar 

  33. Schols HA, Geraeds CCJM, Searle-van Leuwen MF, Kormelink FJM, Voragen AJ (1990) Carbohydr Res 206:105–115

    Article  CAS  Google Scholar 

  34. Kofod LV, Kauppinen S, Christgau S, Andersen LN, Heldt-Hansen HP, Dorreich K, Dalboge H (1994) J Biol Chem 269:29182–29189

    CAS  Google Scholar 

  35. Azadi P, O’Neill MA, Bergmann C, Darvill AG, albersheim P (1995) Glycobiology 5:783–789

    Article  CAS  Google Scholar 

  36. Kauppinen S, Christgau S, Kofod LV, Halkier T, Dorreich K, Dalboge H (1995) J Biol Chem 270:27172–27178

    Article  CAS  Google Scholar 

  37. Molgaard A, Kauppinen S, Larsen S (2000) Structure 8:373–383

    Article  CAS  Google Scholar 

  38. Suykerbuyk MEG, Schaap PJ, Stam H, Musters W, Visser J (1995) Appl Microbiol Biotechnol 43:861–870

    CAS  Google Scholar 

  39. Suykerbuyk MEG, Kester HCM, Schaap PJ, Stam H, Musters W, visser J (1997) Appl Environ Microbiol 63:2507–2515

    CAS  Google Scholar 

  40. Chen HJ, Smith DL, Starrett DA, Zhou D, Tucker ML, Solomos T, Gross KC (1997) Biochem Mol Biol Int 43:823–838

    CAS  Google Scholar 

  41. Fu J, Prade R, Mort A (2001) Carbohydr Res 330:73–81

    Article  CAS  Google Scholar 

  42. Piston SM, Mutter M, van den Broek LAM, Voragen AGJ, Beldman G (1998) Biochem Biophys Res Comm 242:552–559

    Article  Google Scholar 

  43. Petersen TN, Kauppinen S, Larsen S (1997) Structure 5:533–544

    Article  CAS  Google Scholar 

  44. Davis G, Henrissat B (1995) Structure 3:853–859

    Article  Google Scholar 

  45. Coloquhoun IJ, deRuiter GA, Schols HA, Voragen AGJ (1990) Carbohydr Res 206:131–144

    Article  Google Scholar 

  46. Schols HA, Voragen AGJ, Colquhoun IJ (1994) Carbohydr Res 256:97–111

    Article  CAS  Google Scholar 

  47. Mutter M, Colquhoun IJ, Beldman G, Schols HA, Bakx EJ, Voragen AGJ (1998) Plant Physiol 117:141–152

    Article  CAS  Google Scholar 

  48. Mutter M, Renard MGCC, Beldman G, Schols HA, Voragen AGJ (1998) Carbohydr Res 311:155–164

    Article  CAS  Google Scholar 

  49. Mutter M, Beldman G, Pitson SM, Schols HA, Voragen GJ (1998) Plant Physiol 117:153–163

    Article  CAS  Google Scholar 

  50. McKie VA, Vincken J-P, Voragen AGJ, van den Broek LAM, Stemson E, Gilbert HJ (2001) Biochem J 355:167–177

    Article  CAS  Google Scholar 

  51. Pages S, Valette O, Abdou L, Belaich A, Belaich J -P (2003) J Bacteriol 185:4727–4733

    Article  CAS  Google Scholar 

  52. Mutter M, Colquhoun IJ, Schols HA, Beldman G, Voragen AGJ (1996) Plant Physiol 110:73–77

    Article  CAS  Google Scholar 

  53. McDonough MA, Kadirvelraj R, Harris P, Poulsen J -CN, Larsen S (2004) FEBS Letters 565:188–194

    Article  CAS  Google Scholar 

  54. Zhang R, Minh T, Lezondra L, Korolev S, Moy SF, Collart F, Joachimiak A (2005) Proteins: Structure, Function, and Bioinformatics 60:561–565

    Article  CAS  Google Scholar 

  55. Itoh T, Ochiai A, Mikami B, Hashimoto W, Murata K (2006) J Mol Biol 360:573–585

    Article  CAS  Google Scholar 

  56. Itoh T, Ochiai A, Mikami B, Hashimoto W, Murata K (2006) Biochem Biophys Res Comm 347:1021–1029

    Article  CAS  Google Scholar 

  57. Itoh T, Akao S, Hashimoto W, Mikami B, Murata K (2004) J Biol Chem 279:31804–31812

    Article  CAS  Google Scholar 

  58. Hugouvieux-Cotte-Pattat N (2004) Mol Microbiol 51:1361–1374

    Article  CAS  Google Scholar 

  59. Mutter M, Beldman G, Schols HA, Voragen GJ (1994) Plant Physiol 106:241–250

    Article  CAS  Google Scholar 

  60. van der Vlugt-Bergmans CJB, Meeuwsen PJA, Voragen AGJ (2000) Appl Environ Microbiol 66:36–41

    Google Scholar 

  61. Markovic O, Janecek S (2001) Protein Eng 14:615–631

    Article  CAS  Google Scholar 

  62. Beldman G, Vincken J -P, Schols HA, Meeuwsen PJ -A, Herweijer M, Voragen AGJ (2003) Biocatal Biotransformation 21:189–198

    Article  CAS  Google Scholar 

  63. Zandleven J, Beldman G, Bosveld M, Benen J, Voragen A (2005) Biochem J 387:719–725

    Article  CAS  Google Scholar 

  64. Zandleven J, Beldman G, Bosveld M, Schols HA, Voragen AGJ (2006) Carbohydr Polym 65:495–503

    Article  CAS  Google Scholar 

  65. Beldman G, van den Broek LAM, Schols HA, Searle-van Leeuwen MJF, van Laere KMJ, Voragen AGJ (1996) Biotechnol Lett 18:707–712

    Article  CAS  Google Scholar 

  66. Kester HCM, Benen JAE, Visser J (1999) Biotechnol Appl Biochem 30:53–57

    CAS  Google Scholar 

  67. Sakamoto T, Bonnin E, Quemener B, Thibault J-F (2002) Biochim Biophys Acta 1572:10–18

    CAS  Google Scholar 

  68. Voragen AGJ, Schols HA, Beldman G (1992) Fruit Processing 2:98–102

    Google Scholar 

  69. Ryan CA, Bishop P, Pearce G (1981) Plant Physiol 68:616–618

    CAS  Google Scholar 

  70. Nelson MA, Merino ST, Metzenberg RL (1997) Genetics 146:531–540

    CAS  Google Scholar 

  71. Hasegawa K, Mizutani J, Kosemura S, Yamamura S (1992) Plant Physiol 100:1059–1061

    Article  CAS  Google Scholar 

  72. Yamada H (1994) Carbohydr polym 25:269–276

    Article  CAS  Google Scholar 

  73. Inngierdingen K, Coulibaly A, Diallo D, Michaelsen TE, Paulsen BS (2006) Biomacromolecules 7:48–53

    Article  CAS  Google Scholar 

  74. Yamada H (1996) Progress in Biotechnology 14:Pectins and Pectinases, Visser J, Voragen AGJ (eds), Elservier, Amsterdam, pp 173–190

  75. Wong DWS (2006) Appl Biochem Biotehcnol 133:87–112

    Article  CAS  Google Scholar 

  76. Wallace G, Fry SC (1994) Int Rev Cytol 151:229–267

    Article  CAS  Google Scholar 

  77. Foster TJ, Ablett S, McCann MC, Gidley MJ (1996) Biopolymers 39:51–66

    Article  CAS  Google Scholar 

  78. Qi XY, Behrens BX, West PR, Mort AJ (1995) Plant Physiol 108:1691–1701

    Article  CAS  Google Scholar 

  79. Mollet J-C, Park SY, Nothnagel EA, Lord EM (2000) Plant Cell 12:1737–1749

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominic Wong.

Additional information

Reference to a company and/or products is only for purposes of information and does not imply approval of recommendation of the product to the exclusion of others that may also be suitable. All programs and services of the U.S. Department of Agriculture are offered on a nondiscriminatory basis without regard to race, color, national origin, religion, sex, age, marital status, or handicap.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, D. Enzymatic Deconstruction of Backbone Structures of the Ramified Regions in Pectins. Protein J 27, 30–42 (2008). https://doi.org/10.1007/s10930-007-9105-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-007-9105-0

Keywords

Navigation