Skip to main content
Log in

Efficient L-Alanine Production by a Thermo-Regulated Switch in Escherichia coli

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

L-Alanine has important applications in food, pharmaceutical and veterinary and is used as a substrate for production of engineered thermoplastics. Microbial fermentation could reduce the production cost and promote the application of L-alanine. However, the presence of L-alanine significantly inhibit cell growth rate and cause a decrease in the ultimate L-alanine productivity. For efficient l-alanine production, a thermo-regulated genetic switch was designed to dynamically control the expression of l-alanine dehydrogenase (alaD) from Geobacillus stearothermophilus on the Escherichia coli B0016-060BC chromosome. The optimal cultivation conditions for the genetically switched alanine production using B0016-060BC were the following: an aerobic growth phase at 33 °C with a 1-h thermo-induction at 42 °C followed by an oxygen-limited phase at 42 °C. In a bioreactor experiment using the scaled-up conditions optimized in a shake flask, B0016-060BC accumulated 50.3 g biomass/100 g glucose during the aerobic growth phase and 96 g alanine/100 g glucose during the oxygen-limited phase, respectively. The L-alanine titer reached 120.8 g/l with higher overall and oxygen-limited volumetric productivities of 3.09 and 4.18 g/l h, respectively, using glucose as the sole carbon source. Efficient cell growth and L-alanine production were reached separately, by switching cultivation temperature. The results revealed the application of a thermo-regulated strategy for heterologous metabolic production and pointed to strategies for improving L-alanine production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hols, P., Kleerebezem, M., Schanck, A. N., Ferain, T., Hugenholtz, J., Delcour, J., & de Vos, W. M. (1999). Conversion of Lactococcus lactis from homolactic to homoalanine fermentation through metabolic engineering. Nature Biotechnology, 17, 588–592.

    Article  CAS  Google Scholar 

  2. Lee, M., Smith, G., Eiteman, M., & Altman, E. (2004). Aerobic production of alanine by Escherichia coli aceF ldhA mutants expressing the Bacillus sphaericus alaD gene. Applied Microbiology and Biotechnology, 65, 56–60.

    CAS  Google Scholar 

  3. Mallakpour, S., & Dinari, M. (2011). Progress in synthetic polymers based on natural amino acids. Journal of Macromolecular Science-Pure and Applied Chemistry, 48, 644–679.

    Article  CAS  Google Scholar 

  4. Zhang, X., Jantama, K., Moore, J. C., Shanmugam, K. T., & Ingram, L. O. (2007). Production of L-alanine by metabolically engineered Escherichia coli. Applied Microbiology and Biotechnology, 77, 355–366.

    Article  CAS  Google Scholar 

  5. Smith, G. M., Lee, S. A., Reilly, K. C., Eiteman, M. A., & Altman, E. (2006). Fed-batch two-phase production of alanine by a metabolically engineered Escherichia coli. Biotechnology Letters, 28, 1695–1700.

    Article  CAS  Google Scholar 

  6. Wada, M., Narita, K., & Yokota, A. (2007). Alanine production in an H+-ATPase- and lactate dehydrogenase-defective mutant of Escherichia coli expressing alanine dehydrogenase. Applied Microbiology and Biotechnology, 76, 819–825.

    Article  CAS  Google Scholar 

  7. Zhou, L., Niu, D., Tian, K., Chen, X., Prior, B. A., Shen, W., Shi, G., Singh, S., & Wang, Z. (2012). Genetically switched D-lactate production in Escherichia coli. Metabolic Engineering, 14, 560–568.

    Article  CAS  Google Scholar 

  8. Elvin, C. M., Thompson, P. R., Argall, M. E., Philip Hendr, N., Stamford, P. J., Lilley, P. E., & Dixon, N. E. (1990). Modified bacteriophage lambda promoter vectors for overproduction of proteins in Escherichia coli. Gene, 87, 123–126.

    Article  CAS  Google Scholar 

  9. Love, C. A., Lilley, P. E., & Dixon, N. E. (1996). Stable high-copy-number bacteriophage [lambda] promoter vectors for overproduction of proteins in Escherichia coli. Gene, 176, 49–53.

    Article  CAS  Google Scholar 

  10. Datsenko, K. A., & Wanner, B. L. (2000). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proceedings of the National Academy of Sciences of the United States of America, 97, 6640–6645.

    Article  CAS  Google Scholar 

  11. Zhou, L., Zuo, Z., Chen, X., Niu, D., Tian, K., Prior, B. A., Shen, W., Shi, G., Singh, S., & Wang, Z. (2011). Evaluation of genetic manipulation strategies on D-lactate production by Escherichia coli. Current Microbiology, 62, 981–989.

    Article  CAS  Google Scholar 

  12. Kim, S. H., Schneider, B. L., & Reitzer, L. (2010). Genetics and regulation of the major enzymes of alanine synthesis in Escherichia coli. Journal of Bacteriology, 192, 5304–5311.

    Article  CAS  Google Scholar 

  13. Villaverde, A., Benito, A., Viaplana, E., & Cubarsi, R. (1993). Fine regulation of cI857-controlled gene expression in continuous culture of recombinant Escherichia coli by temperature. Applied and Environmental Microbiology, 59, 3485–3487.

    CAS  Google Scholar 

  14. Hashimoto, S.-I., & Katsumata, R. (1998). L-alanine fermentation by an alanine racemase-deficient mutant of the DL-alanine hyperproducing bacterium Arthrobacter oxydans HAP-1. Journal of Fermention and Bioengineering, 86, 385–390.

    Article  CAS  Google Scholar 

  15. Uhlenbusch, I., Sahm, H., & Sprenger, G. A. (1991). Expression of an L-alanine dehydrogenase gene in Zymomonas mobilis and excretion of L-alanine. Applied and Environmental Microbiology, 57, 1360–1366.

    CAS  Google Scholar 

  16. Ratkowsky, D. A., Lowry, R. K., McMeekin, T. A., Stokes, A. N., & Chandler, R. E. (1983). Model for bacterial culture growth rate throughout the entire biokinetic temperature range. Journal of Bacteriology, 154, 1222–1226.

    CAS  Google Scholar 

  17. Zhou, L., Tian, K., Niu, D., Shen, W., Shi, G. Y., Singh, S., & Wang, Z. (2012). Improvement of D-lactate productivity in recombinant Escherichia coli by coupling production with growth. Biotechnology Letters, 34, 1123–1130.

    Article  CAS  Google Scholar 

  18. Yuan, L. Z., Rouvière, P. E., LaRossa, R. A., & Suh, W. (2006). Chromosomal promoter replacement of the isoprenoid pathway for enhancing carotenoid production in E. coli. Metabolic Engineering, 8, 79–90.

    Article  CAS  Google Scholar 

  19. Sandoval-Basurto, E. A., Gosset, G., Bolivar, F., & Ramirez, O. T. (2005). Culture of Escherichia coli under dissolved oxygen gradients simulated in a two-compartment scale-down system: metabolic response and production of recombinant protein. Biotechnology and Bioengineering, 89, 453–463.

    Article  CAS  Google Scholar 

  20. Lara, A. R., Leal, L., Flores, N., Gosset, G., Bolívar, F., & Ramírez, O. T. (2006). Transcriptional and metabolic response of recombinant Escherichia coli to spatial dissolved oxygen tension gradients simulated in a scale-down system. Biotechnology and Bioengineering, 93, 372–385.

    Article  CAS  Google Scholar 

  21. Caspeta, L., Flores, N., Pérez, N. O., Bolívar, F., & Ramírez, O. T. (2009). The effect of heating rate on Escherichia coli metabolism, physiological stress, transcriptional response, and production of temperature-induced recombinant protein: a scale-down study. Biotechnology and Bioengineering, 102, 468–482.

    Article  CAS  Google Scholar 

  22. Abdel-Banat, B. M., Hoshida, H., Ano, A., Nonklang, S., & Akada, R. (2010). High-temperature fermentation: how can processes for ethanol production at high temperatures become superior to the traditional process using mesophilic yeast? Applied Microbiology and Biotechnology, 85, 861–867.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partly funded by the National Natural Science Foundation of China (31300087, 31400058), the Natural Science Foundation of Jiangsu (BK20130131, BK20130139 and BK20140151), the National High Technology Research and Development Program of China (863 Program, 2014AA021304), the High Foreign Experts Project (GDW20123200114), the Priority Academic Program Development of Jiangsu Higher-Education Institutions, the 111 Project (111-2-06), the Jiangsu Province “Collaborative Innovation Center for Advanced Industrial Fermentation” Industry Development Program, the Public Project for Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University (KLIB-KF201306) and the Fundamental Research Funds for the Central Universities (JUSRP51411B, JUSRP51504).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhe-Min Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Deng, C., Cui, WJ. et al. Efficient L-Alanine Production by a Thermo-Regulated Switch in Escherichia coli . Appl Biochem Biotechnol 178, 324–337 (2016). https://doi.org/10.1007/s12010-015-1874-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1874-x

Keywords

Navigation