Skip to main content
Log in

Physicochemical Characterization of an Exopolysaccharide Produced by a Newly Isolated Weissella cibaria

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A high molecular weight (3037 kDa) dextran-like polysaccharide was purified from the culture broth of a probiotic Weissella cibaria. Dry weight of the exopolysaccharides (EPS) obtained after ethanol precipitation was 6.35 g/L by using sucrose as carbon source and was further purified by phenol:chloroform:isoamyl alcohol (25:24:1) extraction and acetone precipitation to white powder with 52 % recovery. Rheological characterization revealed that it has a pseudoplastic behaviour and showed a temperature tolerance of up to 280 °C in thermogravimetric analysis. Fourier transform infrared (FTIR) spectra showed the characteristic peaks of polysaccharide such as hydroxyl group, α-pyranose, asymmetrical C–H stretching vibration of methyl group and carbonyl hydrogens of d-glucopyranose. The 1H nuclear magnetic resonance (NMR) spectrum showed resonances of hydrogen corresponding to the glucosyl residue, a repeat unit of the biopolymer. The cell viability analysis of normal L6 cells treated with the Weissella EPS showed that it is noncytotoxic even up to the 500-μg/mL level. A 0.2 % (w/v) supplementation of EPS in 2 % (w/v) wheat starch preparation could reduce the degree of syneresis up to 45 % and up to 75 % with 1 % EPS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ahmeda, R. Z., Siddiqui, K., Arman, M., & Ahmed, N. (2012). Characterization of high molecular weight dextran produced by Weissella cibaria CMGDEX3. Carbohydrate Polymers, 90, 441–446.

    Article  Google Scholar 

  2. Becker, A., Katzen, F., Pühler, A., & Ielpi, L. (1998). Xanthan gum biosynthesis and application: a biochemical/genetic perspective. Applied Microbiology and Biotechnology, 50, 145–152.

    Article  CAS  Google Scholar 

  3. Bremer, P. J., & Geesey, G. G. (1991). An evaluation of biofilms development utilizing non-destructive attenuated total reflectance Fourier transform infrared spectroscopy. Biofouling, 3, 89–100.

    Article  CAS  Google Scholar 

  4. Chi, Z., Su, C. D., & Lu, W. D. (2007). A new exopolysaccharide produced by marine Cyanothece sp. 113. Bioresource Technology, 98, 1329–1332.

    Article  CAS  Google Scholar 

  5. Dabour, N., & LaPointe, G. (2005). Identification and molecular characterization of the chromosomal exopolysaccharide biosynthesis gene cluster from Lactococcus lactis subsp. cremoris SMQ-461. Applied and Environmental Microbiology, 71, 7414–7425.

    Article  CAS  Google Scholar 

  6. De Man, J. C., Rogosa, M., & Sharpe, M. E. (1960). A medium for the cultivation of Lactobacilli. Journal of Bacteriology, 23, 130.

    Google Scholar 

  7. De Vuyst, L., & Degeest, B. (1999). Heteropolysaccharides from lactic acid bacteria. FEMS Microbiology Reviews, 23, 153–177.

    Article  Google Scholar 

  8. de Vuyst, L., & Degeest, B. (1999). Indication that the nitrogen source influences both amount and size of exopolysaccharides produced by Streptococcus thermophilus LY03 and modelling of the bacterial growth and exopolysaccharide production in a complex medium. Applied Environmental Microbiology, 65, 2863–2870.

    Google Scholar 

  9. Divya, J. B., Varsha, K. K., & Nampoothiri, K. M. (2012). Newly isolated lactic acid bacteria with probiotic features for potential application in food industry. Applied Biochemistry and Biotechnology, 167, 1314–1324.

    Article  CAS  Google Scholar 

  10. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28, 350–356.

    Article  CAS  Google Scholar 

  11. Eganathan, P., & Parida, A. (2012). Micropropagation of Sauropus androgynus (L.) Merr.—an important green leafy vegetable. Indian Journal of Biotechnology, 11, 235–237.

    CAS  Google Scholar 

  12. Freitas, F., Alves, V. D., & Reis, M. A. (2011). Advances in bacterial exopolysaccharides: from production to biotechnological applications. Trends in Biotechnology, 29, 388–398.

    Article  CAS  Google Scholar 

  13. Galle, S., Schwab, C., Arendt, E., & Ganzle, M. (2010). Exopolysaccharide-forming Weissella strains as starter cultures for sorghum and wheat sourdoughs. Journal of Agricultural and Food Chemistry, 58, 5834–5841.

    Article  CAS  Google Scholar 

  14. Gardiner, G., Stanton, C., Lynch, P. B., Collins, J. K., Fitzgerald, G., & Ross, R. P. (1999). Evaluation of cheddar cheese as a food carrier for delivery of a probiotic strain to the gastrointestinal tract. Journal of Dairy Science, 82, 1379–1387.

    Article  CAS  Google Scholar 

  15. Holdsworth, S. D. (1993). Rheological models used for the prediction of the flow properties of food products: a literature review. Transactions of the Institute of Chemical Engineers Part C, 71, 39–179.

    Google Scholar 

  16. Ismail, B., & Nampoothiri, K. M. (2010). Exopolysaccharide production and prevention of syneresis in starch using encapsulated probiotic Lactobacillus plantarum. Food Technology and Biotechnology, 8(4), 484–489.

    Google Scholar 

  17. Ismail, B., & Nampoothiri, K. M. (2014). Molecular characterization of an exopolysacchaaride from a probiotic Lactobacillus plantarum MTCC9510 and its efficacy to improve the texture of starchy food. Journal of Food Science and Technology, 51(12), 4012–4018.

    Article  CAS  Google Scholar 

  18. Lynch, K. M. (2014). Isolation and characterization of exopolysaccharide-producing Weissella and Lactobacillus and their application as adjunct cultures in cheddar cheese. International Dairy Journal, 34, 125–134.

    Article  CAS  Google Scholar 

  19. Malang, S. K., Maina, N. H., Schwab, C., Tenkanen, M., & Lacroix, C. (2015). Characterization of exopolysaccharide and ropy capsular polysaccharide formation by Weissella. Food Microbiology, 46, 418–427.

    Article  CAS  Google Scholar 

  20. Manrique, G. D., & Lajolo, F. M. (2002). FT-IR spectroscopy as a tool for measuring degree of methyl esterification in pectins isolated from ripening papaya fruit. Postharvest Biology and Technology, 25, 99–107.

    Article  CAS  Google Scholar 

  21. Mishra, A., & Jha, B. (2009). Isolation and characterization of extra cellular polymeric substances from micro algae Dunaliella salina under salt stress. Bioresource Technology, 100, 3382–3386.

    Article  CAS  Google Scholar 

  22. Mohan Rao, J. T., & Goyal, A. (2013). A novel high dextran yielding Weissella cibaria JAG8 for cereal food application. International Journal of Food Sciences and Nutririon, 64(3), 346–354.

    Article  Google Scholar 

  23. Morris, V. J. (1995). In food polysaccharides and their applications: bacterial polysaccharides (Stephen, A. M. ed.). Marcel Dekker, Inc., New York, Basel, Hong Kong, pp. 341-375.

  24. Park, J.-H., Ahn, H.-J., Kim, S.-G., & Chung, C.-H. (2013). Dextran-like polysaccharide producing Leuconostoc and Weissella from kimchi and its ingredients. Food Science and Biotechnology, 22, 1047–1053.

    Article  CAS  Google Scholar 

  25. Patel, A. K. (2010). Polysaccharides from probiotics as food additives. Food Technology and Biotechnology, 48(4), 451–463.

    CAS  Google Scholar 

  26. Paulo, M. E. (2012). Production, extraction and characterization of exopolysaccharides produced by the native Leuconostoc pseudomesenteroides R2 strain. Annals of the Brazilian Academy of Sciences, 84(2), 495–507.

    Article  CAS  Google Scholar 

  27. Pavlova, K., Panchev, I., & Hristozova, T. S. (2005). Physico-chemical characterization of exomannan from Rhodotorula achniorum MC. World Journal of Microbiology and Biotechnology, 21, 279–283.

    Article  CAS  Google Scholar 

  28. Sajna, K. V., Gottumukkala, L., Dhar, K. S., & RK, S. (2013). Studies on structural and physical characteristics of a novel exopolysaccharide from Pseudozyma sp. NII 08165. International Journal of Biological Macromolecules, 59, 84–89.

    Article  CAS  Google Scholar 

  29. Seesuriy achan, P. (2012). Optimization of exopolysaccharide over production by Lactobacillus confusus in solid state fermentation under high salinity stress. Bioscience, Biotechnology, and Biochemistry, 76(5), 912–917.

    Article  CAS  Google Scholar 

  30. Seymour, F. R. (1979). Structural analysis of dextrans containing 2-α-D-glucosylated α-D glucopyranosyl residues at the branch points, by use of 13C nuclear magnetic resonance spectroscopy and gas–liquid chromatography–mass spectrometry. Carbohydrate Research, 71, 231–250.

    Article  CAS  Google Scholar 

  31. Singh, P. R. (2010). Isolation and characterization of exopolysaccharides from sea weed associated bacteria Bacillus licheniformis. Carbohydrate Polymers, 84, 1019–1026.

    Article  Google Scholar 

  32. Tingirikari, J. M. R., Kothari, D., & Goyal, A. (2014). Superior prebiotic and physicochemical properties of novel dextran from Weissella cibaria JAG8 for potential food applications. Food and Function. doi:10.1039/ c4fo00319e.

    Google Scholar 

  33. Uzochukwu, S., Balogh, E., Loefler, R. T., & Ngoddy, P. O. (2002). Structural analysis by 13C nuclear magnetic resonance spectroscopy of glucan extracted from natural palm wine. Food Chemistry, 76, 287–291.

    Article  CAS  Google Scholar 

  34. Viñarta, S. C., Molina, O. E., Figueroa, L. I. C., & Fariña, J. I. (2006). A further insight into the practical applications of exopolysaccharides from Sclerotium rolfsii. Food Hydrocolloids, 20, 619–629.

    Article  Google Scholar 

  35. Wolter, A., Hager, A. S., Zannini, E., Galle, S., Gänzle, M. G., Waters, D. M., & Arendt, E. K. (2014). Evaluation of exopolysaccharide producing Weissella cibaria MG1strain for the production of sourdough from various flours. Food Microbiology, 37, 44–50.

    Article  CAS  Google Scholar 

  36. Zannini, E. (2013). Barley malt wort fermentation by exopolysaccharide forming Weissella cibaria MG1 for the production of a novel beverage. Journal of Applied Microbiology, 115, 1379–1387.

    Article  CAS  Google Scholar 

  37. Zhang, L., & Zhang, S. (2012). Effect of exopolysaccharide producing lactic acid bacterial on the gelation and texture properties of yogurt. Advanced Materials Research, 430–432, 890–893.

    Google Scholar 

  38. Zheng, G. H., & Sosulski, F. W. (1998). Determination of water separation from cooked starch and flour pastes after refrigeration and freeze-thaw. Journal of Food Science, 63, 134–139.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the XIIth five year plan Network project of CSIR, FUNHEALTH (CSC 0133) for the financial support. Chemical Sciences and Functional Materials Divisions in CSIR–NIIST are acknowledged for providing FTIR, NMR, TGA and rheological analyses facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kesavan Madhavan Nampoothiri.

Additional information

Practical Application

The exopolysaccharide from Weissella cibaria was found to be of higher molecular weight, thermostable and pseudoplastic in nature. These properties account for its potential application in food industry as viscosifier, texturizer and emulsification agent.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Standard calibration curve for GPC analysis. (GIF 156 kb)

High resolution image (TIFF 612 kb)

Supplementary Fig. 2

13C NMR spectra for EPS. (GIF 51 kb)

High resolution image (TIFF 17347 kb)

Supplementary Fig. 3

Prevention of syneresis in wheat starch (WS) by Weissella EPS at varying concentrations. (GIF 48 kb)

High resolution image (TIFF 16965 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasanthakumari, D.S., Harikumar, S., Beena, D.J. et al. Physicochemical Characterization of an Exopolysaccharide Produced by a Newly Isolated Weissella cibaria . Appl Biochem Biotechnol 176, 440–453 (2015). https://doi.org/10.1007/s12010-015-1586-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1586-2

Keywords

Navigation