Skip to main content
Log in

Partial Characterization of Xylanase Produced by Caldicoprobacter algeriensis, a New Thermophilic Anaerobic Bacterium Isolated from an Algerian Hot Spring

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

To date, xylanases have expanded their use in many processing industries, such as pulp, paper, food, and textile. This study aimed the production and partial characterization of a thermostable xylanase from a novel thermophilic anaerobic bacterium Caldicoprobacter algeriensis strain TH7C1T isolated from a northeast hot spring in Algeria. The obtained results showed that C. algeriensis xylanase seems not to be correlated with the biomass growth profile whereas the maximum enzyme production (140.0 U/ml) was recorded in stationary phase (18 h). The temperature and pH for optimal activities were 70 °C and 11.0, respectively. The enzyme was found to be stable at 50, 60, 70, and 80 °C, with a half-life of 10, 9, 8, and 4 h, respectively. Influence of metal ions on enzyme activity revealed that Ca+2 enhances greatly the relative activity to 151.3 %; whereas Hg2+ inhibited significantly the enzyme. At the best of our knowledge, this is the first report on the production of xylanase by the thermophilic bacterium C. algeriensis. This thermo- and alkaline-tolerant xylanase could be used in pulp bleaching process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abou, H. M., Nordberg, K. E., Bartonek-Roxa, E., Raghothama, S., Simpson, P., Gilbert, H., Williamson, M., & Holst, O. (2000). Biochemical Journal, 345, 53–60.

    Article  Google Scholar 

  2. Ahmad, Z., Butt, M. S., & Riaz, M. (2013). Pakistan Journal of Agricultural Science, 50, 433–437.

    Google Scholar 

  3. Akhavan Sepahy, A., Ghazi, S., & Akhavan Sepahy, M. (2011). Journal of Enzyme Research. doi:10.4061/2011/593624.

    Google Scholar 

  4. Andrade, C. M. C., Aguiar, W. B., & Antranikian, G. (2001). Applied Biochemistry and Biotechnology, 91, 655–669.

    Article  Google Scholar 

  5. Bailey, M. J., Biely, P., & Poutanen, K. (1992). Journal of Biotechnology, 23, 257–270.

    Article  CAS  Google Scholar 

  6. Balch, W. E., Fox, G., Magrum, L., Woese, C., & Wolfe, R. (1979). Microbiological Reviews, 43, 260.

    CAS  Google Scholar 

  7. Bataillon, M., Nunes-Cardinali, A. P., Castillon, N., & Duchiron, F. (2000). Enzyme and Microbial Technology, 26, 187–192.

    Article  CAS  Google Scholar 

  8. Beg, Q., Bhushan, B., Kapoor, M., & Hoondal, G. (2000). Journal of Industrial Microbiology & Biotechnology, 24, 396–402.

    Article  CAS  Google Scholar 

  9. Bérenger, J.-F., Frixon, C., Bigliardi, J., & Creuzet, N. (1985). Canadian Journal of Microbiology, 31, 635–643.

    Article  Google Scholar 

  10. Bhat, M. (2000). Biotechnology Advances, 18, 355–383.

    Article  CAS  Google Scholar 

  11. Biely, P. (1985). Trends in Biotechnology, 3, 286–290.

    Article  CAS  Google Scholar 

  12. Bok, J. D., Goers, S. K., Eveleigh, D. E. (1994) In Enzymatic Conversion of Biomass for Fuel Production, pp. 54-65. Edited by M. E. Himmel, J. O. Baker & R. P. Overend. ACS Symposium series 566. Washington, DC: American Chemical Society.

  13. Bouanane-Darenfed, A., Fardeau, M.-L., Grégoire, P., Joseph, M., Kebbouche-Gana, S., Benayad, T., Hacene, H., Cayol, J.-L., & Ollivier, B. (2011). Current Microbiology, 62, 826–832.

    Article  CAS  Google Scholar 

  14. Boucherba, N., Gagaoua, M., Copinet, E., Bettache, A., Duchiron, F., Benallaoua, S., Boucherba, N., Gagaoua, M., Copinet, E., Bettache, A., Duchiron, F., & Benallaoua, S. (2014). Applied Biochemistry and Biotechnology. doi:10.1007/s12010-013-0709-x.

    Google Scholar 

  15. Boucherba, N., Said, B., Estelle, C., Hakim, H., & Duchiron, F. (2011). Process Biochemistry, 46, 519–525.

    Article  Google Scholar 

  16. Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  17. Cannio, R., Di Prizito, N., Rossi, M., & Morana, A. (2004). Extremophiles, 8, 117–124.

    Article  CAS  Google Scholar 

  18. Cesar, T., & Mrša, V. (1996). Enzyme and Microbial Technology, 19, 289–296.

    Article  CAS  Google Scholar 

  19. Cordeiro, C. A. M., Martins, M. L. L., Luciano, A. B., & Silva, R. F. D. (2002). Brazilian Aechives of Biology and Technology, 45, 413–418.

  20. Dahlberg, L., Holst, O., & Kristjansson, J. K. (1993). Applied Microbiology and Biotechnology, 40, 63–68.

    Article  CAS  Google Scholar 

  21. Dhillon, A., Gupta, J., Jauhari, B., & Khanna, S. (2000). Bioresource Technology, 73, 273–277.

    Article  CAS  Google Scholar 

  22. Dhillon, A., Gupta, J., & Khanna, S. (2000). Process Biochemistry, 35, 849–856.

    Article  CAS  Google Scholar 

  23. Fontes, C., Hall, J., Hirst, B., Hazlewood, G., & Gilbert, H. (1995). Applied Microbiology and Biotechnology, 43, 52–57.

    Article  CAS  Google Scholar 

  24. Fujimoto, H., Ooi, T., Wang, S.-L., Takizawa, T., Hidaka, H., Murao, S., & Arai, M. (1995). Bioscience, Biotechnology, and Biochemistry, 59, 538–540.

    Article  CAS  Google Scholar 

  25. Gessesse, A. (1998). Applied and Environmental Microbiology, 64, 3533–3535.

    CAS  Google Scholar 

  26. Gilbert, H. J., & Hazlewood, G. P. (1993). Journal General Microbiology, 139, 187–194.

    Article  CAS  Google Scholar 

  27. Gomes, J., Gomes, I., Kreiner, W., Esterbauer, H., Sinner, M., & Steiner, W. (1993). Journal of Biotechnology, 30, 283–297.

    Article  CAS  Google Scholar 

  28. Gomes, J., Gomes, I., & Steiner, W. (2000). Extremophiles, 4, 227–235.

    Article  CAS  Google Scholar 

  29. Guerfali, M., Gargouri, A., & Belghith, H. (2008). Applied Biochemistry and Biotechnology, 150, 267–279.

    Article  CAS  Google Scholar 

  30. Hayashi, H., Takehara, M., Hattori, T., Kimura, T., Karita, S., Sakka, K., & Ohmiya, K. (1999). Applied Microbiology and Biotechnology, 51, 348–357.

    Article  CAS  Google Scholar 

  31. Horikoshi, K. (1996). FEMS Microbiology Review, 18, 259–270.

    CAS  Google Scholar 

  32. Hreggvidsson, G. O., Kaiste, E., Holst, O., Eggertsson, G., Palsdottir, A., & Kristjansson, J. K. (1996). Applied and Environmental Microbiology, 62, 3047–3049.

    CAS  Google Scholar 

  33. Kamble, R. D., & Jadhav, A. R. (2012). Asia-Pacific Journal Tropical Biomedicine, 2, 1790–1797.

    Article  Google Scholar 

  34. Khandeparker, R., Verma, P., & Deobagkar, D. (2011). New Biotechnology, 28, 814–821.

    Article  CAS  Google Scholar 

  35. Khasin, A., Alchanati, I., & Shoham, Y. (1993). Applied and Environmental Microbiology, 59, 1725–1730.

    CAS  Google Scholar 

  36. Kiddinamoorthy, J., Anceno, A. J., Haki, G. D., & Rakshit, S. K. (2008). World Journal of Microbiology and Biotechnology, 24, 605–612.

    Article  CAS  Google Scholar 

  37. Kumar, D., Verma, R., Sharma, P., Rana, A., Sharma, R., Prakash, C., & Bhalla, T. C. (2010). Biological Forum International Journal, 2, 83–87.

  38. Leuschner, C., & Antranikian, G. (1995). World Journal of Microbiology and Biotechnology, 11, 95–114.

    Article  CAS  Google Scholar 

  39. Liu, W., Zhu, W., Lu, Y., Kong, J., & Ma, G. (1998). Process Biochemistry, 33, 331–336.

    Article  CAS  Google Scholar 

  40. Mahatman, K. K., Garg, N., Chauhan, R., & Kumar, A. (2010). Iranica Journal of Energy and Environment, 4, 265–274.

    Google Scholar 

  41. Mielenz, J. R. (2001). Current Opinion in Microbiology, 4, 324–329.

    Article  CAS  Google Scholar 

  42. Miller, G. L. (1959). Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  43. Morais, C. G., Lara, C. A., Marques, S., Fonseca, C., Lachance, M.-A., & Rosa, C. A. (2013). International Journal of Systematic and Evolutionary Microbiology, 63, 2356–2360.

    Article  CAS  Google Scholar 

  44. Nagar, S., Mittal, A., Kumar, D., & Gupta, V. K. (2012). International Journal of Biological Macromolecules, 50, 414–420.

    Article  CAS  Google Scholar 

  45. Nair, S. G., Sindhu, R., & Shashidhar, S. (2008). Applied Biochemistry and Biotechnology, 149, 229–243.

    Article  CAS  Google Scholar 

  46. Nakamura, S., Ishiguro, Y., Nakai, R., Wakabayashi, K., Aono, R., & Horikoshi, K. (1995). Journal of Molecular Catalysis B: Enzymatic, 1, 7–15.

    Article  CAS  Google Scholar 

  47. Nakamura, S., Wakabayashi, K., Nakai, R., Aono, R., & Horikoshi, K. (1993). Applied and Environmental Microbiology, 59, 2311–2316.

    CAS  Google Scholar 

  48. Nucci, R., Moracci, M., Vaccaro, C., Vespa, N., & Rossi, M. (1993). Biotechnology and Applied Biochemistry, 17(Pt 2), 239–250.

    CAS  Google Scholar 

  49. Oakley, A. J., Heinrich, T., Thompson, C. A., & Wilce, M. C. (2003). Acta Crystallographica Section D: Biological Crystallography, 59, 627–636.

    Article  Google Scholar 

  50. Okazaki, W., Akiba, T., Horikoshi, K., & Akahoshi, R. (1984). Applied Microbiology and Biotechnology, 19, 335–340.

    Article  CAS  Google Scholar 

  51. Porsuk, I., Özakin, S., Bali, B., & Yilmaz, E. I. (2013). Turkish Journal of Biology, 37, 370–375.

    CAS  Google Scholar 

  52. Prakash, P., Jayalakshmi, S., Prakash, B., Rubul, M., & Sreeramulu, K. (2012). World Journal of Microbiology and Biotechnology, 28, 183–192.

    Article  CAS  Google Scholar 

  53. Puls, J., Schmidt, O., & Granzow, C. (1987). Enzyme and Microbial Technology, 9, 83–88.

    Article  CAS  Google Scholar 

  54. Raj, A., Kumar, S., Singh, S. K., & Kumar, M. (2013). Scientific World Journal. doi:10.1155/2013/386769.

    Google Scholar 

  55. Rani, D. S., & Nand, K. (2000). Process Biochemistry, 36, 355–362.

    Article  CAS  Google Scholar 

  56. Sakka, K., Kojima, Y., Kondo, T., Karita, S., Shimada, K., & Oi-imiya, K. (1994). Bioscience Biotechnology & Biochemistry, 58, 1496–1499.

    Article  CAS  Google Scholar 

  57. Samain, E., Debeire, P., & And Touzel, J. P. (1997). Journal of Biotechnology, 58, 71–78.

    Article  CAS  Google Scholar 

  58. Sanghi, A., Garg, N., Kuhar, K., Kuhad, R. C., & Gupta, V. K. (2009). Bioresources, 4, 1109–1129.

  59. Shah, A. R., & Madamwar, D. (2005). Process Biochemistry, 40, 1763–1771.

    Article  CAS  Google Scholar 

  60. Shi, H., Zhang, Y., Li, X., Huang, Y., Wang, L., Wang, Y., Ding, H. and Wang, F. (2013) Biotechnology for Biofuels, 6. doi:10.1186/1754-6834-6-26.

  61. Simpson, H. D., Haufler, U. R., & Daniel, R. M. (1991). Biochemical Journal, 277, 413–417.

    CAS  Google Scholar 

  62. Singh, S., Madlala, A. M., & Prior, B. A. (2003). FEMS Microbiology Review, 27, 3–16.

    Article  CAS  Google Scholar 

  63. Subramaniyan, S., & Prema, P. (2002). Critical Reviews in Biotechnology, 22, 33–64.

    Article  CAS  Google Scholar 

  64. Sunna, A., Prowe, S. G., Stoffregen, T., & Antranikian, G. (1997). FEMS Microbiology Letters, 148, 209–216.

    Article  CAS  Google Scholar 

  65. Swaroopa Rani, D., & Nand, K. (2001). Anaerobe, 7, 45–53.

    Article  CAS  Google Scholar 

  66. Techapun, C., Charoenrat, T., Poosaran, N., Watanabe, M., & Sasak, K. (2002). Journal of Bioscience and Bioengineering, 93, 431–433.

    Article  CAS  Google Scholar 

  67. Touzel, J. P., O′Donohue, M., Debeire, P., Samain, E., & Breton, C. (2000). International Journal of Systematic and Evolutionary Microbiology, 50, 315–320.

    Article  CAS  Google Scholar 

  68. Tsujibo, H., Miyamoto, K., Kuda, T., Minami, K., Sakamoto, T., Hasegawa, T., & Inamori, Y. (1992). Applied and Environmental Microbiology, 58, 371–375.

    CAS  Google Scholar 

  69. Verma, D., & Satyanarayana, T. (2012). Bioresource Technology, 107, 333–338.

    Article  CAS  Google Scholar 

  70. Viikari, L., Alapuranen, M., Puranen, T., Vehmaanperä, J., & Siika-Aho, M. (2007). Advances in Biochemical Engineering/Biotechnology, 108, 121–145.

    Article  CAS  Google Scholar 

  71. Wahyuntari, B., Mubarik, N. R., & Setyahadi, S. (2010). Microbiology Indonesia, 3, 17–22.

    Article  Google Scholar 

  72. Wang, S.-L., Yen, Y.-H., Shih, I.-L., Chang, A. C., Chang, W.-T., Wu, W.-C., & Chai, Y.-D. (2003). Enzyme and Microbial Technology, 33, 917–925.

    Article  CAS  Google Scholar 

  73. Winterhalter, C., & Liebl, W. (1995). Applied and Environmental Microbiology, 61, 1810–1815.

    CAS  Google Scholar 

  74. Wong, K., Tan, L., & Saddler, J. N. (1988). Microbiological Reviews, 52, 305.317.

    Google Scholar 

  75. Zhao, Y. Y., Luo, H. Y., Shi, P. J., & Bai, Y. G. (2011). Journal of Microbiology and Biotechnology, 21, 861–868.

    Article  CAS  Google Scholar 

  76. Zheng, H. C., Liu, X. G., & Han, Y. (2012). Journal of Microbiology and Biotechnology, 22, 930–938.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We wish to express our gratitude to Abdelhak Kouchah (Hyproc Shiping Company) for his valuable help during the preparation of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Laure Fardeau.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouacem, K., Bouanane-Darenfed, A., Boucherba, N. et al. Partial Characterization of Xylanase Produced by Caldicoprobacter algeriensis, a New Thermophilic Anaerobic Bacterium Isolated from an Algerian Hot Spring. Appl Biochem Biotechnol 174, 1969–1981 (2014). https://doi.org/10.1007/s12010-014-1153-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1153-2

Keywords

Navigation