Skip to main content
Log in

Talaromyces thermophilus β-d-Xylosidase: Purification, Characterization and Xylobiose Synthesis

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

When grown on wheat bran as the only carbon source, the filamentous fungus Talaromyces thermophilus produces large amounts of β-xylosidase activity. The presence of glucose drastically decreases the β-xylosidase production level. The β-xylosidase of T. thermophilus was purified by ammonium sulfate precipitation, DEAE–cellulose chromatography, and gel filtration (high-performance liquid chromatography). The molecular mass of the enzyme was estimated to be 97 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis and gel filtration. The enzyme activity was optimum at 50 °C and pH 7. The apparent Michaelis constant K m of the β-xylosidase was 2.37 mM for p-nitrophenyl-β-d-xylopyranoside, with a V max of 0.049 μmol min−1 per milligram protein. Enzyme activity was inhibited by Cu2+, Hg2+, and Zn2+ and activated by Ca2+, Mn2+, and Co+ at a concentration of 5 mM. At high xylose concentration, this enzyme catalyses the condensation reaction leading to xylobiose production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Coughlan, M. P., & Hazlewood, G. P. (1993). Biotechnology and Applied Biochemistry, 17, 259–289.

    CAS  Google Scholar 

  2. Carpita, N. C. (1996). Annual Review of Plant Physiology and Plant Molecular Biology, 47, 445–476.

    Article  CAS  Google Scholar 

  3. Biely, P. (1985). Trends in Biotechnology, 3, 286–290.

    Article  CAS  Google Scholar 

  4. Bajpai, P. (1997). Advances in Applied Microbiology, 43, 141–194.

    Article  CAS  Google Scholar 

  5. Wheals, A. E., Basso, L. C., Alves, D. M. G., & Amorim, H. V. (1999). Trends in Biotechnology, 17, 482–487.

    Article  CAS  Google Scholar 

  6. Poutanen, K., & Plus, J. (1988). Applied Microbiology and Biotechnology, 28, 425–432.

    Article  CAS  Google Scholar 

  7. Saha, B. C., & Bothast, R. J. (1999). In S. H. Imam, R. V. Greene, & B. R. Zaidi (Eds.), Biopolymers: Utilizing nature’s advanced materials (pp. 167–194). ACS Symposium Series 723, Washington, DC.

  8. Rizzatti, A. C. S., Jorge, J. A., Terenzi, H. F., Rechia, C. G. V., & Polizeli, M. L. T. M. (2001). Journal of Industrial Microbiology and Biotechnology, 26, 156–160.

    Article  CAS  Google Scholar 

  9. Almeida, E. M. D., Lourdes, M. D., Polizeli, T. M., Terenzi, H. F., & Jorge, J. A. (1995). FEMS Microbiology Letters, 130, 171–176.

    Article  Google Scholar 

  10. Zanoela, F. F., Teixeira, M. L. T. M., Terenzi, H. F., & Jorgen, J. A. (2004). Journal of Industrial Microbiology and Biotechnology, 31, 170–176.

    Google Scholar 

  11. Henrisaat, B., & Bairoch, A. (1996). Biochemical Journal, 316, 695–696.

    Google Scholar 

  12. Maalej, I. (2004). Master of Biotechnology, Faculté de pharmacie de Monastir, Tun.

  13. Mandels, M., & Weber, J. (1969). Advances in Chemistry Series, 95, 391–413.

    Article  CAS  Google Scholar 

  14. Yanai, T., & Sato, M. (2001). Bioscience, Biotechnology, and Biochemistry, 65, 527–533.

    Article  CAS  Google Scholar 

  15. Bailey, M. J., Biely, P., & Poutanen, K. (1992). Journal of Biotechnology, 23, 257–270.

    Article  CAS  Google Scholar 

  16. Miller, G. L. (1959). Analytical Chemistry, 3, 1426–428.

    Google Scholar 

  17. Laemmli, U. K., & Favre, M. (1973). Journal of Molecular Biology, 80, 575–599.

    Article  CAS  Google Scholar 

  18. Vargas, A. S., Polizeli, M. T. L. M., Terenzi, H. F., & Joao, A. J. (2004). Process Biochemistry, 39, 1931–1938.

    Article  CAS  Google Scholar 

  19. Lenartovicz, V., Souza, C. G. M., Moreira, F. G., & Peralta, R. M. (2003). Process Biochemistry, 38, 1775–1780.

    Article  CAS  Google Scholar 

  20. Matsuo, M., & Yasui, T. (1984). Agricultural and Biological Chemistry, 48, 1845–1852.

    CAS  Google Scholar 

  21. Kiss, T., & Kiss, L. (2000). World Journal of Microbiology and Biotechnology, 16, 465–470.

    Article  CAS  Google Scholar 

  22. Tuohy, M. G., Puls, J., Claeysens, M., Vrsanska, M., & Coughlan, M. P. (1993). Biochemical Journal, 290, 515–523.

    CAS  Google Scholar 

  23. Matsuo, M., Yasui, T., & Kobayashi, T. (1977). Agricultural and Biological Chemistry, 41, 1593–1599.

    CAS  Google Scholar 

  24. Katapodis, P., Nerinckx, W., Claeyssens, M., & Christakopoulos, P. (2006). Process Biochemistry, 41, 2402–2409.

    Article  CAS  Google Scholar 

  25. Kumar, S., & Ramón, D. (1996). FEMS Microbiology Letters, 135, 287–293.

    CAS  Google Scholar 

  26. Wong, K. K. Y., & Saddler, J. N. (1993). In M. P. Coughlan & G. P. Hazlewood (Eds.), Hemicellulose and hemicellulases (pp. 127–143). London: Portland Press.

  27. Manzanares, P., Ramon, D., & Querol, A. (1999). International Journal of Food Microbiology, 46, 105–112.

    Article  CAS  Google Scholar 

  28. Ravet, C., Thomas, D., & Legoy, M. D. (1993). Biotechnology and Bioengineering, 42, 303–330.

    Article  CAS  Google Scholar 

  29. Iizuka, Y., Shinoyama, H., Kamiyama, Y., & Yasui, T. (1992). Bioscience, Biotechnology, and Biochemistry, 56, 331–332.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work have been supported by grants from the Tunisian government Contrat-Programme, Ministère de l’Enseignement Supérieur de la Recherche Scientifique et de la Technologie of Tunisia. The authors wish to express their thanks to Mr. Anouar Smaoui from FSS for his valuable proofreading of the English of the present paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hafedh Belghith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guerfali, M., Gargouri, A. & Belghith, H. Talaromyces thermophilus β-d-Xylosidase: Purification, Characterization and Xylobiose Synthesis. Appl Biochem Biotechnol 150, 267–279 (2008). https://doi.org/10.1007/s12010-008-8260-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8260-x

Keywords

Navigation