Skip to main content
Log in

Bioremediation of Distillery Sludge into Soil-Enriching Material Through Vermicomposting with the Help of Eisenia fetida

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The aim of the present study was bioremediation of distillery sludge into a soil-enriching material. It was mixed with a complementary waste, cattle dung, and subjected to vermicomposting with (V) and without (T, control) Eisenia fetida in the ratio of 0:100 % (V1, T1), 10:90 (V2, T2), 25:75 (V3, T3), 50:50 (V4, T4), 75:25 (V5, T5) and 100:0 % (V6, T6), respectively. Survival rate, growth rate, onset of maturity, cocoon production and population build-up increased with increasing ratio of cattle dung. Maximum mortality of earthworm was observed in V6 mixture. On the basis of response surface design, the concentration of sludge giving highest number of worms, cocoons and hatchlings came out to be 21.11, 24.51 and 17.19 %, respectively. Nitrogen, phosphorus, sodium and pH increased during vermicomposting but decreased in the products without earthworm and there was increase in the contents of transition metals in the products of both the techniques. However, organic carbon, electrical conductivity and potassium showed an opposite trend.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ramana, S., Biswas, A. K., Singh, A. B., & Yadava, R. B. R. (2001). Relative efficacy of different distillery effluents on growth, nitrogen fixation and yield of groundnut. Bioresource Technology, 81, 117–121.

    Article  Google Scholar 

  2. Lung, A. J., Lin, C. M., Kim, J. M., Marshall, M. R., Nordstedt, R., Thompson, N. P., & Wei, C. I. (2001). Destruction of Escherichia coli O157:H7 and Salmonella Enteritidis in cow manure composting. Journal of Food Protection, 64, 1309–1314.

    Article  CAS  Google Scholar 

  3. Martin-Gil, J., Navas-Garcia, L. M., Gomez-Sobrino, E., Correa-Guimaraes, A., Hernandez-Navarro, S., Sanchez-Bascones, M., & Ramos-Sanchez, M. C. (2007). Composting and vermicomposting experiences in the treatments and bioconversion of asphaltens from the prestige oil spill. Bioresource Technology, 99, 1821–1829.

    Article  Google Scholar 

  4. Nelson, D. W., & Sommers, L. E. (1996). In A. L. Page, R. H. Miller, & D. R. Keeney (Eds.), Method of soil analysis (pp. 539–579). Madison: American Society of Agronomy.

    Google Scholar 

  5. Bremner, J. M., & Mulvaney, R. G. (1982). Nitrogen total. In A. L. Page, R. H. Miller, & D. R. Keeney (Eds.), Methods of soil analysis (pp. 575–624). Madison: American Society of Agronomy.

    Google Scholar 

  6. John, M. K. (1970). Colorimetric determination of phosphorus in soil and plant materials with ascorbic acid. Soil Science, 109, 214–220.

    Article  CAS  Google Scholar 

  7. Suthar, S. (2008). Bioremediation of aerobically treated distillery sludge mixed with cow dung by using an epigeic earthworm Eisenia fetida. The Environmentalist, 28, 76–84.

  8. Edwards, C. A., & Edward, C. A. (1998). The use of earthworms in the breakdown and management of organic wastes. In C. A. Edward (Ed.), Earthworm ecology (pp. 327–354). Boca Raton: Lewis.

    Google Scholar 

  9. Barne, A. Z., & Striganova, B. R. (2005). Evaluation of production parameters of earthworms Eiseniella tetraedera in laboratory culture. Biology Bulletin, 32, 323–326.

    Google Scholar 

  10. Lavelle, P. (1981). Strategies de reproduction chez les vers de terre. Acta Oecologica, 21, 17–133.

    Google Scholar 

  11. Jadia, C. D., & Fulekar, M. H. (2008). Vermicomposting of vegetable waste: a bio-physicochemical process based on hydro-operating bioreactor. African Journal of Biotechnology, 7, 3723–3730.

    CAS  Google Scholar 

  12. Brady, N. C., & Weil, R. R. (2002). The nature and properties of soils (13th ed.). New Delhi: Prentice Hall of India. 960 pp.

    Google Scholar 

  13. Beck-friis, B., Smars, S., Jonsson, H., & Kirchmann, H. (2001). SE-Structures and Environment: Gaseous emissions of carbon dioxide, ammonia and nitrous oxide from organic household waste in a compost reactor under different temperature regimes. Journal of Agricultural Engineering Research, 78, 423–430.

    Article  Google Scholar 

  14. Singh, J., Kaur, A., Vig, A. P., & Rup, P. J. (2010). Role of Eisenia fetida in rapid recycling of nutrients from biosludge of beverage industry. Ecotoxicology and Environmental Safety, 73, 430–435.

    Article  CAS  Google Scholar 

  15. Khawairakpam, M., & Bhargava, R. (2009). Vermitechnology for sewage sludge recycling. Journal of Hazardous Materials, 161, 948–954.

    Article  Google Scholar 

  16. Kaur, A., Singh, J., Vig, A. P., Dhaliwal, S. S., & Rup, P. J. (2010). Cocomposting with and without Eisenia fetida for conversion of toxic paper mill sludge to a soil conditioner. Bioresource Technology, 101, 8192–8198.

    Article  CAS  Google Scholar 

  17. Vig, A. P., Singh, J., Wani, S. H., & Dhaliwal, S. S. (2011). Vermicomposting of tannery sludge mixed with cattle dung into valuable manure using earthworm Eisenia fetida (Savigny). Bioresource Technology, 102, 7941–7945.

    Article  CAS  Google Scholar 

  18. Guest, C. A., Johnston, C. T., King, J. J., Allenman, J. J., Tishmack, J. K., & Norton, L. D. (2001). Chemical characterisation of synthetic soil from composting coal combustion and pharmaceutical by- products. Journal of Environmental Quality, 80, 246–253.

    Article  Google Scholar 

  19. Tognetti, C., Mazzarino, M. J., & Lao, F. (2007). Improving the quality of municipal organic waste compost. Bioresource Technology, 98, 1067–1076.

    Article  CAS  Google Scholar 

  20. Cabrera, M. L., Kissel, D. E., & Vigil, M. F. (2005). Nitrogen mineralization from organic residues: Research opportunities. Journal of Environmental Quality, 34, 75–79.

    Article  CAS  Google Scholar 

  21. Garg, V. K., & Kaushik, P. (2005). Effect of textile wastewater on different cultivar of wheat. Bioresource Technology, 96, 1189–1193.

    Article  Google Scholar 

  22. Tripathi, G., & Bhardwaj, P. (2004). Comparative studies on biomass production, life cycles and composting efficiency of Eisenia foetida (Savigny) and Lampito mauritii (Kinberg). Bioresource Technology, 92, 275–278.

  23. Alexander, M. (1983). Introduction to soil microbiology (2nd ed., p. 467). New Delhi: Wiley Eastern limited.

    Google Scholar 

  24. Krishnamoorthy, R. V. (1990). Mineralization of phosphorous by faecal phosphatase of some earthworms of Indian tropica. Proceedings of the Indian Academy of Sciences, 99, 509–518.

  25. Orozco, F. H., Cegarra, J., Trujillo, L. M., & Roig, A. (1996). Vermicomposting of coffee pulp using the earthworm Eisenia fetida: Effects on C and N contents and the availability of nutrients. Biology and Fertility of Soils, 22, 162–166.

    Article  Google Scholar 

  26. Delgado, M., Bigeriego, M., Walter, I., & Calbo, R. (1995). Use of California red worm in sewage sludge transformation. Turrialba, 45, 33–41.

    Google Scholar 

  27. Deolalikar, A. V., Mitra, A., Bhattacharyee, S., & Chakraborty, S. (2005). Effect of vermicomposting process on metal content of paper mill solid waste. Journal of Environmental Science and Engineering, 47, 81–84.

  28. Bhat, S. A., Singh, J., & Vig, A. P. (2013). Vermiremediation of dyeing sludge from textile mill with the help of exotic earthworm Eisenia fetida Savigny. Environmental Science and Pollution Research, 20, 5975–5982.

    Article  CAS  Google Scholar 

  29. Suthar, S., & Singh, S. (2008). Feasibility of vermicomposting in biostabilization of sludge from a distillery industry. Sci Total Environment, 394, 237–243.

    Article  CAS  Google Scholar 

  30. Selladurai, G., Anbusaravanan, N., Shyam, K. P., Kandhasamy, P., & Balamuthu, K. (2010). Recycling of distillery sludge from sugarcane industry using bioresource technology. Journal of Applied Sciences Research, 6, 218–223.

  31. Romero, E., Plaza, C., Senesi, N., Nogales, R., & Polo, A. (2007). Humic acid-like fractions in raw and vermicomposted winery and distillery wastes. Geoderma, 139, 397–406.

    Article  CAS  Google Scholar 

  32. Madan, S., & Yadav, A. (2012). Vermicomposting of Distillery sludge with different wastes by using Eisenia fetida. Advances in Applied Science Research, 3, 3844–3847.

    CAS  Google Scholar 

  33. Hemalatha, B. (2012). Recycling of industrial sludge along with municipal solid waste – vermicomposting method. International Journal of Advanced Engineering Technology, 3, 71–74.

    Google Scholar 

  34. Suthar, S. (2008). Metal remediations from partially composted distillery sludge using composting earthworm Eisenia foetida. Journal of Environmental Monitoring, 10, 1099–1106.

    Article  CAS  Google Scholar 

  35. Nogales, R., Cifuentes, C., & Benitez, E. (2005). Vermicomposting of winery wastes: A labo- ratory study. Journal of Environmental Science and Health, Part B. Pesticides, Food Contaminants, and Agricultural Wastes, 40, 659–673.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, India.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jaswinder Singh or Arvinder Kaur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, J., Kaur, A. & Vig, A.P. Bioremediation of Distillery Sludge into Soil-Enriching Material Through Vermicomposting with the Help of Eisenia fetida . Appl Biochem Biotechnol 174, 1403–1419 (2014). https://doi.org/10.1007/s12010-014-1116-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1116-7

Keywords

Navigation