Skip to main content
Log in

Functional Nucleic-Acid-Based Sensors for Environmental Monitoring

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Efforts to replace conventional chromatographic methods for environmental monitoring with cheaper and easy to use biosensors for precise detection and estimation of hazardous environmental toxicants, water or air borne pathogens as well as various other chemicals and biologics are gaining momentum. Out of the various types of biosensors classified according to their bio-recognition principle, nucleic-acid-based sensors have shown high potential in terms of cost, sensitivity, and specificity. The discovery of catalytic activities of RNA (ribozymes) and DNA (DNAzymes) which could be triggered by divalent metallic ions paved the way for their extensive use in detection of heavy metal contaminants in environment. This was followed with the invention of small oligonucleotide sequences called aptamers which can fold into specific 3D conformation under suitable conditions after binding to target molecules. Due to their high affinity, specificity, reusability, stability, and non-immunogenicity to vast array of targets like small and macromolecules from organic, inorganic, and biological origin, they can often be exploited as sensors in industrial waste management, pollution control, and environmental toxicology. Further, rational combination of the catalytic activity of DNAzymes and RNAzymes along with the sequence-specific binding ability of aptamers have given rise to the most advanced form of functional nucleic-acid-based sensors called aptazymes. Functional nucleic-acid-based sensors (FNASs) can be conjugated with fluorescent molecules, metallic nanoparticles, or quantum dots to aid in rapid detection of a variety of target molecules by target-induced structure switch (TISS) mode. Although intensive research is being carried out for further improvements of FNAs as sensors, challenges remain in integrating such bio-recognition element with advanced transduction platform to enable its use as a networked analytical system for tailor made analysis of environmental monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ligler, F. S. and Taitt, C.R. (2002) A Optical Biosensors: Present and Future Elsevier Science B.V.: Amsterdam.

  2. Sadik, O. A., Wanekaya, A. K., & Andreescu, S. (2004). Journal of Environmental Monitoring, 6, 513–522.

    CAS  Google Scholar 

  3. Tondeur, Y., Niederhut, W. N., Campana, J. E., & Missler, S. R. (1987). Biomedical and Environmental Mass Spectrometry, 14(8), 449–456.

    CAS  Google Scholar 

  4. Breaker, R. R. (1997). Chemistry Review, 97, 371.

    CAS  Google Scholar 

  5. Kopylov, A. M., & Spiridonova, V. A. (2000). Molecular Biology, 34, 940.

    CAS  Google Scholar 

  6. Guerrier-Takada, C., Gardiner, K., Marsh, T., Pace, N., & Altman, S. (1983). Cell, 35, 849–857.

    CAS  Google Scholar 

  7. Symons, R. H. (1992). Annual Review of Biochemistry, 61, 641–671.

    CAS  Google Scholar 

  8. Cech, T. R. (1983). Cell, 34, 713.

    CAS  Google Scholar 

  9. Ban, N., Nissen, P., Hansen, J., Moore, P. B., & Steitz, T. A. (2000). Science, 289, 902.

    CAS  Google Scholar 

  10. Pan, T., & Uhlenbeck, O. C. (1992). Nature, 358, 560–563.

    CAS  Google Scholar 

  11. Bartel, D. P., & Szostak, J. W. (1993). Science, 261, 1411–1418.

    CAS  Google Scholar 

  12. Ekland, E. H., Szostak, J. W., & Bartel, D. P. (1995). Science, 269, 364–370.

    CAS  Google Scholar 

  13. Chapman, K. B., & Szostak, J. W. (1995). Chemical Biology, 2, 325–333.

    CAS  Google Scholar 

  14. Ekland, E. H., & Bartel, D. P. (1996). Nature, 382, 373.

    CAS  Google Scholar 

  15. Tsukiji, S., Pattnaik, S. B., & Suga, H. (2003). Nature Structural Biology, 10, 713.

    CAS  Google Scholar 

  16. Conn, M. M., Prudent, J. R., & Schultz, P. G. (1996). Journal of the American Chemical Society, 118, 7012.

    CAS  Google Scholar 

  17. Chapple, K. E., Bartel, D. P., & Unrau, P. J. (2003). RNA, 9, 1208.

    CAS  Google Scholar 

  18. Feng, L. Y., Chen, Y., Ren, J. S., & Qu, X. G. (2011). Biomaterials, 32, 2930.

    CAS  Google Scholar 

  19. Kim, Y. J., Kim, Y. S., Niazi, J. H., & Gu, M. B. (2010). Bioprocess Biosyst. Engineering, 33, 31–37.

    CAS  Google Scholar 

  20. Nolte, A., Klussmann, S., Bald, R., Erdmann, V. A., & Fürste, J. P. (1996). Nature Biotechnology, 14(9), 1116–1119.

    CAS  Google Scholar 

  21. Klussmann, S., Nolte, A., Bald, R., Erdmann, V. A., & Fürste, J. P. (1996). Nature Biotechnology, 14(9), 1112–1115.

    CAS  Google Scholar 

  22. Williams, K. P., Liu, X. H., Schumacher, T. N., Lin, H. Y., Ausiello, D. A., Kim, P. S., & Bartel, D. P. (1997). Proceedings of the National Academy of Sciences, 94(21), 11285–11290.

    CAS  Google Scholar 

  23. Breaker, R. R. (1996). Current Opinion in Biotechnology, 7, 442–448.

    CAS  Google Scholar 

  24. Corey, M. J., & Corey, E. (1996). Proceedings of the National Academy of Sciences, 93, 11428–11434.

    CAS  Google Scholar 

  25. Breaker, R. R., & Joyce, G. F. (1995). Chem. Biol., 2, 655.

    CAS  Google Scholar 

  26. Bruesehoff, P. J., Li, J., Augustine, A. J., & Lu, Y. (2002). Comb. Chem., 5, 327.

    CAS  Google Scholar 

  27. Joyce, G. F. (2004). Annu. Rev. Biochem., 73, 791–836.

    CAS  Google Scholar 

  28. Silverman, S. K. (2005). Nuclear Acids Research, 33(19), 6151–6163.

    CAS  Google Scholar 

  29. Robertson, M. P., Hesselberth, J. R., & Ellington, A. D. (2001). RNA, 7(4), 513–523.

    CAS  Google Scholar 

  30. Purschke, W. G., Radtke, F., Kleinjung, F., & Klussmann, S. (2003). Nuclear Acids Research, 31(12), 3027–3032.

    CAS  Google Scholar 

  31. Duffus, J. H. (2002). “Heavy metals” a meaningless term? (IUPAC Technical Report). Pure and Applied Chemistry, 74, 793–807.

    CAS  Google Scholar 

  32. Klopman, G. (1974). Generalized perturbation theory of chemical reactivity, Chemical Reactivity and Reaction Paths, New York (pp. 55–165). USA: John Wiley.

    Google Scholar 

  33. Frausto da Silva, J. J. R., & Williams, R. J. P. (1993). The biological chemistry of the elements: the inorganic chemistry of life. Oxford, UK: Oxford University Press.

    Google Scholar 

  34. Nieboer, E., & Richardson, D. H. S. (1980). Environmental Pollution (Series B), 1, 3–26.

    CAS  Google Scholar 

  35. Gloag, D. (1981). British Medical Journal (Clinical Research Ed.), 282, 41–44.

    CAS  Google Scholar 

  36. Liu, J., & Yi, L. (2003). Journal of the American Chemical Society, 125, 6642–6643.

    CAS  Google Scholar 

  37. Liu, J., & Yi, L. (2004). Chemistry of Materials, 16, 3231–3238.

    CAS  Google Scholar 

  38. Liu, J., & Yi, L. (2004). Journal of the American Chemical Society, 126, 12298–12305.

    CAS  Google Scholar 

  39. Swearingen, C. B., Wernette, D. P., Cropek, D. M., Lu, Y., Sweedler, J. V., & Bohn, P. W. (2005). Analytical Chemistry, 77, 442–448.

    CAS  Google Scholar 

  40. Chang, I. H., Tulock, J. J., Liu, J., Kim, W. S., Cannon, D. M., Jr., Lu, Y., Bohn, P. W., Sweedler, J. V., & Cropek, D. M. (2005). Environmental Science and Technology, 39, 3756–3761.

    CAS  Google Scholar 

  41. Wernette, D. P., Swearingen, C. B., Cropek, D. M., Lu, Y., Sweedler, J. V., & Bohn, P. W. (2006). Analyst, 131, 41–7.

    CAS  Google Scholar 

  42. Dalavoy, T. S., Wernette, D. P., Gong, M., Sweedler, J. V., Lu, Y., Flachsbart, B. R., Shannon, M. A., Bohn, P. W., & Cropek, D. M. (2008). Lab Chip, 8, 786–93.

    CAS  Google Scholar 

  43. Chen, X., Guan, H. L., He, Z. K., Zhou, X. D., & Hu, J. M. (2012). Analysis Methods, 4, 1619–1622.

    CAS  Google Scholar 

  44. Shen, L., Chen, Z., Li, Y., He, S., Xie, S., Xu, X., Liang, Z., Meng, X., Li, Q., Zhu, Z., Li, M., Le, X. C., & Shao, Y. (2008). Analytical Chemistry, 4, 6323–6328.

    Google Scholar 

  45. Mazumdar, D., Liu, J., Lu, G., Zhou, J., & Lu, Y. (2010). Chemical Communications, 46, 1416–1418.

    CAS  Google Scholar 

  46. Wang, F., Wu, Z., Lu, Y., Wang, J., Jiang, J. H., & Yu, R. Q. (2010). Annual Biochemistry, 405, 168–73.

    CAS  Google Scholar 

  47. Guo, L., Nie, D., Qiu, C., Zheng, Q., Wu, H., Ye, P., Hao, Y., Fu, F., & Chen, G. (2012). Biosensors and Bioelectronics, 35, 123–7.

    CAS  Google Scholar 

  48. Zhao, Y., Zhang, Q., Wang, W., & Jin, Y. (2013). Biosensors and Bioelectronics, 43, 231–236.

    CAS  Google Scholar 

  49. Gao, A., Tang, C. X., He, X. W., & Yin, X. B. (2013). Analyst, 138, 263–268.

    CAS  Google Scholar 

  50. Li, T., Wang, E., & Dong, S. (2010). Analytical Chemistry, 82, 1515–1520.

    CAS  Google Scholar 

  51. Pelossof, G., Tel-Vered, R., & Willner, I. (2012). Analytical Chemistry, 84, 3703–3709.

    CAS  Google Scholar 

  52. Zhuang, J., Fu, L., Xu, M., Zhou, Q., Chen, G., & Tang, D. (2013). Biosensors and Bioelectronics, 45, 52–7.

    CAS  Google Scholar 

  53. Nie, D., Wu, H., Zheng, Q., Guo, L., Ye, P., Hao, Y., Li, Y., Fu, F., & Guo, Y. (2012). Chemical Communications, 48, 1150–1152.

    CAS  Google Scholar 

  54. Li, H., Zhang, Q., Cai, Y., Kong, D. M., & Shen, H. X. (2012). Biosensors and Bioelectronics, 34, 159–164.

    CAS  Google Scholar 

  55. Smirnov, I., & Shafer, R. H. (2000). Journal of Molecular Biology, 296, 1–5.

    CAS  Google Scholar 

  56. Brenneman, K. L., Poduri, S., Stroscio, M. A., & Dutta, M. (2013). IEEE Sensors Journal, 13, 1783–1786.

    CAS  Google Scholar 

  57. Nicol, C. W. (2012). Minamata: a saga of suffering and hope”Japan times, 7, 10.

    Google Scholar 

  58. Ministry of the Environment, Govt of Japan, Minamata Disease The History and Measures; Chapter 2

  59. Bakir, F., Rustam, H., Tikriti, S., Al-Damluji, S. F., & Shihristani, H. (1980). Postgraduate Medical Journal, 56, 1–10.

    CAS  Google Scholar 

  60. Carvalho, C. M., Chew, E. H., Hashemy, S. I., Lu, J., & Holmgren, A. (2008). Journal of Biological Chemistry, 283, 11913–23.

    CAS  Google Scholar 

  61. ATSDR - Mercury - Regulations and Advisories, p509-524.

  62. Braman, R. (1971). Analytical Chemistry, 43, 1462–1467.

    CAS  Google Scholar 

  63. Ono, A., & Togashi, H. (2004). Angewandte Chemie International Edition in English, 43, 4300–4302.

    CAS  Google Scholar 

  64. Liu, J., & Lu, Y. (2007). Angewandte Chemie International Edition in English, 46, 7587–7590.

    CAS  Google Scholar 

  65. Chiang, C. K., Huang, C. C., Liu, C. W., & Chang, H. T. (2008). Analytical Chemistry, 80, 3716–3721.

    CAS  Google Scholar 

  66. Wang, J., & Liu, B. (2008). Chemical communications (Cambridge), 39, 4759–4761.

    Google Scholar 

  67. Liu, B. (2008). Biosensors and Bioelectronics, 24, 762–766.

    CAS  Google Scholar 

  68. Xue, X., Wang, F., & Liu, X. (2008). Journal of the American Chemical Society, 130, 3244–3245.

    CAS  Google Scholar 

  69. Li, D., Wieckowska, A., & Willner, I. (2008). Angewandte Chemie International Edition in English, 47, 3927–3931.

    CAS  Google Scholar 

  70. Wu, D., Zhang, Q., Chu, X., Wang, H., Shen, G., & Yu, R. (2010). Biosensors and Bioelectronics, 25, 1025–1031.

    CAS  Google Scholar 

  71. Xu, X., Wang, J., Jiao, K., & Yang, X. (2009). Biosensors and Bioelectronics, 24, 3153–3158.

    CAS  Google Scholar 

  72. Yu, C. J., Cheng, T. L., & Tseng, W. L. (2009). Biosensors and Bioelectronics, 25, 204–210.

    CAS  Google Scholar 

  73. Li, T., Dong, S., & Wang, E. (2009). Analytical Chemistry, 81, 2144–2149.

    CAS  Google Scholar 

  74. Li, T., Li, B., Wang, E., & Dong, S. (2009). Chemistry of Communications (Cambridge), 24, 3551–3553.

    Google Scholar 

  75. Hoang, C. V., Oyama, M., Saito, O., Aono, M., & Nagao, T. (2013). Science Reports, 3, 1175.

    Google Scholar 

  76. Brewer, G. J. (2010). Clinical Neurophysiology, 121, 459–460.

    Google Scholar 

  77. Casarett & Doull’s Toxicology, The basic science of poisons, Fifth Edition, Edited by Curtis D. Klassen, McGraw-Hill, New York. pp 715.

  78. Edelstein DL. U.S. Geological Survey, Mineral commodity summaries, January 2013.

  79. Environmental Protection Agency, National Primary Drinking Water Regulations for Lead and Copper, Federal Register / Vol. 65, No. 8 / Wednesday, January 12, 2000 / Rules and Regulations. pp. 1950-2015.

  80. Carmi, N., Shultz, L. A., & Breaker, R. R. (1996). Chemical Biology, 3, 1039–1046.

    CAS  Google Scholar 

  81. Carmi, N., Balkhi, S. R., & Breaker, R. R. (1998). Proceedings of the National Academy of Sciences, 95, 2233–2237.

    CAS  Google Scholar 

  82. Carmi, N., & Breaker, R. R. (2001). Bioorganic and Medicinal Chemistry, 9, 2589–2600.

    CAS  Google Scholar 

  83. Liu, J., & Lu, Y. (2007). Journal of the American Chemical Society, 129, 9838–9839.

    CAS  Google Scholar 

  84. Zuo, P., Yin, B. C., & Ye, B. C. (2009). Biosensors and Bioelectronics, 25, 935–939.

    CAS  Google Scholar 

  85. Wang, Y., Yang, F., & Yang, X. (2010). Nanotechnology, 21, 205502.

    Google Scholar 

  86. Su, Y. T., Lan, G. Y., Chen, W. Y., & Chang, H. T. (2010). Analytical Chemistry, 82, 8566–8572.

    CAS  Google Scholar 

  87. Miao, X., Ling, L., Cheng, D., & Shuai, X. (2012). Analyst, 137, 3064–3069.

    CAS  Google Scholar 

  88. Fang, Z., Huang, J., Lie, P., Xiao, Z., Ouyang, C., Wu, Q., Wu, Y., Liu, G., & Zeng, L. (2010). Chemical communications (Cambridge), 46, 9043–9045.

    CAS  Google Scholar 

  89. Zhang, L., Zhu, J., Ai, J., Zhou, Z., Jia, X., & Wang, E. (2013). Biosensors and Bioelectronics, 39, 268–273.

    Google Scholar 

  90. Yin, B. C., Ye, B. C., Tan, W., Wang, H., & Xie, C. C. (2009). Journal of the American Chemical Society, 131, 14624–14625.

    CAS  Google Scholar 

  91. Chen, Z., Li, L., Mu, X., Zhao, H., & Guo, L. (2011). Talanta, 85, 730–735.

    CAS  Google Scholar 

  92. Lin, Z., Li, X., & Kraatz, H. B. (2011). Analytical Chemistry, 83, 6896–6901.

    CAS  Google Scholar 

  93. Shi, L., Liang, G., Li, X. H., & Liu, X. H. (2012). Analytical Methods, 4, 1036–1040.

    CAS  Google Scholar 

  94. Adriaens P, Vannela R, (2010) Dnazymes and sensors incorporating the Same, US Patent No - US 7,709,619 B2.

  95. Wu, Y., Zhan, S., Wang, F., He, L., Zhi, W., & Zhou, P. (2012). Chemical communications (Cambridge), 48, 4459–4461.

    CAS  Google Scholar 

  96. Wu, Y., Liu, L., Zhan, S., Wang, F., & Zhou, P. (2012). Analyst, 137, 4171–4178.

    CAS  Google Scholar 

  97. Liu, J., Brown, A. K., Meng, X., Cropek, D. M., Istok, J. D., Watson, D. B., & Lu, Y. (2007). Proceedings of the National Academy of Science, 104, 2056–2061.

    CAS  Google Scholar 

  98. Tang, Q., Yuan, Y., Xiao, X., Guo, P., Hu, J., Ma, D., & Gao, Y. (2013). Microchimica Acta, 180, 1059–1064.

    CAS  Google Scholar 

  99. Wu, P., Hwang, K., Lan, T., & Lu, Y. (2013). Journal of the American Chemical Society, 135, 5254–5257.

    CAS  Google Scholar 

  100. Sett, A., Das, S., Sharma, P., & Bora, U. (2012). Open Journal of Applied Biosensors, 1, 9–19.

    Google Scholar 

  101. Fana, L., Zhaoa, G., Shia, H., Liua, M., & Lia, Z. (2013). Biosensors and Bioelectronics, 43, 12–18.

    Google Scholar 

  102. Shim, W. B., Mun, H., Joung, H.-A., Ofori, J. A., Chung, D.-H., & Kim, M. G. (2014). Food Control, 36(1), 30–35.

    CAS  Google Scholar 

  103. Bonel, L., Vidal, J. C., Duato, P., & Castillo, J. R. (2011). Biosensors and Bioelectronics, 26(7), 325–9.

    Google Scholar 

  104. Vivekananda, J.(2003). Methods and compositions for aptamers against anthrax. US Patent no- US6569630 B1.

  105. Robertson, M. P., & Ellington, A. D. (2000). Nuclear Acids Research, 28(8), 1751–1759.

    CAS  Google Scholar 

  106. Liu, J., Cao, Z., & Lu, Y. (2009). Chemistry Reviews, 109, 1948–1998.

    CAS  Google Scholar 

  107. Silva, C., & Walter, N. G. (2009). RNA, 15(1), 76–84.

    Google Scholar 

  108. Liu, J., & Lu, Y. (2004). Analytical Chemistry, 76, 1627–32.

    CAS  Google Scholar 

  109. Knudsen, S. M., Lee, J., Ellington, A. D., & Savran, C. A. (2006). Journal of the American Chemical Society, 128(50), 15936–15937.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Utpal Bora.

Additional information

All authors contributed equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sett, A., Das, S. & Bora, U. Functional Nucleic-Acid-Based Sensors for Environmental Monitoring. Appl Biochem Biotechnol 174, 1073–1091 (2014). https://doi.org/10.1007/s12010-014-0990-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0990-3

Keywords

Navigation