Skip to main content

Nanobiosensors for Detection of Micropollutants

  • Chapter
  • First Online:
Environmental Nanotechnology

Part of the book series: Environmental Chemistry for a Sustainable World ((ECSW,volume 14))

Abstract

The integration of nanotechnology in the sensor technology open ups the possibility for a wide variety of applications, such as micropollutants detection. Micropollutants are emerging as a new challenge to the scientific community, where the growing number of pollutants requires the development of innovative analytical devices that are precise, sensitive, specific, rapid, and easy-to-use to meet the increasing demand for environmental pollution control. Nanobiosensors, as a powerful alternative to conventional analytical techniques, enable the highly sensitive, real-time, and high-frequency monitoring of micropollutants without extensive sample preparation. Since nanobiosensor holds the possibility of detecting and manipulating atoms and molecules using nanodevices, which have led to the development of biosensors that interact with extremely small molecules that need to be analyzed, such as micropollutants.

This chapter reviews important advances in nanobiosensor structures based functionalized nanoparticles, nanotubes, and nanowires with biorecognition materials (e.g., enzymes, aptamers, DNAzymes, antibodies and whole cells) that facilitate the increasing application of nanobiosensors for detection of micropulutants. Nanomaterials such as gold nanoparticles, carbon nanotubes, magnetic nanoparticles and quantum dots have been actively studied for nanobiosensors. The use of nanoparticle-functionalized surfaces can drastically boost the specificity of the detection system, that make nanobiosensor becomes more refined and reliable. It will eventually make small devices for rapid screening of a wide variety of micropollutants with very low sensitivity and selectivity at low cost, which has become a new interdisciplinary frontier between chemical or biological detection, material science, and chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbas A, Brimer A, Slocik JM, Tian L, Naik RR, Singamaneni S (2013) Multifunctional analytical platform on a paper strip: separation, preconcentration, and subattomolar detection. Anal Chem 85(8):3977–3983

    Article  CAS  Google Scholar 

  • Agrawal S, Prajapati R (2012) Nanosensors and their pharmaceutical applications: a review. Int J Pharm Sci Technol 4:1528–1535

    Google Scholar 

  • Ajayan PM (1999) Nanotubes from carbon. Chem Rev 99:1787–1800

    Article  CAS  Google Scholar 

  • Astruc D, Chardac F, Dendritic F (2001) Dendritic catalysts and dendrimers in catalysis. Chem Rev 101:2991–3024

    Article  CAS  Google Scholar 

  • Bagheri H, Afkhami A, Khoshsafar H, Rezaei M, Shirzadmehr A (2013) Simultaneous electrochemical determination of heavy metals using a triphenylphosphine/MWCNTs composite carbon ionic liquid electrode. Sensors Actuators B 186:451–460

    Article  CAS  Google Scholar 

  • Baioni AP, Vidotti M, Fiorito PA, de Torresi SIC (2008) Copper hexacyanoferrete nanoparticles modified electrode. J Electroanal Chem 622:219–224

    Article  CAS  Google Scholar 

  • Carrillo-Carrión C, Simonet BM, Valcárcel M (2009) Carbon nanotube–quantum dot nanocomposites as new fluorescence nanoparticles for the determination of trace levels of PAHs in water. Anal Chim Acta 652:278–284

    Article  CAS  Google Scholar 

  • Chen JR, Miao YQ, He NY, Wu XH, Li SJ (2004) Nanotechnology and biosensors. Biotechnol Adv 22(7):505–518

    Article  CAS  Google Scholar 

  • Chen L, Gu B, Zhu G, Wu Y, Liu S, Xu C (2008) Electron transfer properties and electrocatalytic behavior of tyrosinase on ZnO nanorod. J Electroanal Chem 617(1):7–13

    Article  CAS  Google Scholar 

  • Chen H, Hu W, Li CM (2015) Colorimetric detection of mercury(II) based on 2,2-bipyridyl inducedquasi-linear aggregation of gold nanoparticles. Sensors Actuators B 215:421–427

    Article  CAS  Google Scholar 

  • Cheng ZH, Li G, Liu MM (2015) Metal-enhanced fluorescence effect of Ag and Au nanoparticles modified with rhodamine derivative in detecting Hg2+. Sensors Actuators B 212:495–504

    Article  CAS  Google Scholar 

  • Chithrani BD, Ghazani AA, Chan WCW (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6:662–668

    Article  CAS  Google Scholar 

  • Concejero MA, Galve R, Herradon B, Gonzalez MJ, Frutos M (2001) Feasibility of high-performance immunochromatography as an isolation method for PCBs and other dioxin-like compounds. Anal Chem 73:3119–3125

    Article  CAS  Google Scholar 

  • Crooks RM (2001) Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis. Acc Chem Res 34:181–190

    Article  CAS  Google Scholar 

  • Cui Y, Wei Q, Park H, Lieber CM (2001) Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293(5533):1289–1292

    Article  CAS  Google Scholar 

  • Davis JJ, Coleman KS, Azamian BR, Bagshaw CB, Green MLH (2003) Chemical and biochemical sensing with modified single walled carbon nanotubes. Chemistry 9(16):3732–3739

    Article  CAS  Google Scholar 

  • De Dios AE, Diaz Garcia ME (2010) Multifunctional nanoparticles: analytical prospects. Anal Chim Acta 666(1–2):1–22

    Article  CAS  Google Scholar 

  • de la Escosura-Muniz A, Ambrosi A, Merkoci A (2008) Electrochemical analysis with nanoparticle based biosystems. Trends Anal Chem 27:568–584

    Article  CAS  Google Scholar 

  • de la Rica R, Mendoza E, Lechuga LM, Matsui H (2008) Label-free pathogen detection with sensor chips assembled from peptide nanotubes. Angew Chem Int Ed 47(50):9752–9755

    Article  CAS  Google Scholar 

  • Di Francia G, Quercia L, La Ferrara S, Manzo S, Chiavarini S, Cerullo F, De Filippo F, La Ferrara V, Maddalena P, Vitiello R (1999) Second workshop on chemical sensors & biosensors. Rome, p 18

    Google Scholar 

  • Ding N, Zhao H, Peng W, He Y, Zhou Y, Yuan L, Zhang Y (2012) A simple colorimetric sensor based on anti-aggregation of gold nanoparticles for Hg2+ detection. Colloids Surf A Physicochem Eng Asp 395:161–167

    Article  CAS  Google Scholar 

  • Du J, Zhu B, Chen X (2013) Urine for plasmonic nanoparticle-based colorimetric detection of mercury ion. Small 9:4104–4111

    Article  CAS  Google Scholar 

  • Duong HD, Reddy CVG, Rhee JI, Vo-Dinh T (2011) Amplification of fluorescence emission of CdSe/ZnS QDs entrapped in a sol–gel matrix, a new approach for detection of trace level of PAHs. Sensors Actuators B 157:139–145

    Article  CAS  Google Scholar 

  • El-Deab MS, Ohsaka T (2002) An extraordinary electrocatalytic reduction of oxigen on gold nanoparticles-electrodeposited gold electrode. Electrochem Commun 4:288–292

    Article  CAS  Google Scholar 

  • Endo T, Okuyama A, Matsubara Y, Nishi K, Kobayashi M, Yamamura S, Morita Y, Takamura Y, Mizukami H, Tamiya E (2005) Fluorescence-based assay with enzyme amplification on a micro-flow immunosensor chip for monitoring coplanar polychlorinated biphenyls. Anal Chim Acta 531:7–13

    Article  CAS  Google Scholar 

  • Esposito E, Cortesi R, Drechsler M, Paccamiccio L, Mariani P, Contado C, Stellin E, Menegatti E, Bonina F, Puglia C (2005) Cubosome dispersions as delivery systems for percutaneuos administration of indomethacin. Pharm Res 22:2163–2173

    Article  CAS  Google Scholar 

  • Fang B, Kim JH, Yu JS (2008) Colloid-imprinted carbon with superb nanostructure as an efficient cathode electrocatalyst support in proton exchange membrane fuel cell. Electrochem Commun 10(4):659–668

    Article  CAS  Google Scholar 

  • Farhadi K, Forough M, Molaei R, Hajizadeh S, Rafipour A (2012) Highly selective Hg2+ colorimetric sensor using green synthesized and unmodified silver nanoparticles. Sensors Actuators B 161:880–885

    Article  CAS  Google Scholar 

  • Foster LE (2006) Medical nanotechnology: science, innovation, and opportunity. Pearson Education, Upper Saddle River

    Google Scholar 

  • Fu X, Chen L, Choo J (2017) Optical nanoprobes for ultrasensitive immunoassay. Anal Chem 89(1):124–137

    Article  CAS  Google Scholar 

  • German JB, Smilowitz JT, Zivkovic AM (2006) Lipoproteins: when size really matters. Curr Opin Coll Interf Sci 11(2):171–183

    Article  CAS  Google Scholar 

  • Giljohann DA, Seferos DS, Patel PC, Millstone JE, Rosi NL, Mirkin CA (2007) Oligonucleotide loading determines cellular uptake of DNA-modified gold nanoparticles. Nano Lett 7:3818–3821

    Article  CAS  Google Scholar 

  • Gong J, Zhou T, Song D, Zhang L (2010) Monodispersed Au nanoparticles decorated graphene as an enhanced sensing platform for ultrasensitive stripping voltammetric detection of mercury (II). Sensors Actuators B 150:491–497

    Article  CAS  Google Scholar 

  • Gooding JJ, Wibowo RJ, Liu Q, Yang W, Losic D, Orbons S, Mearns FJ, Shapter JG, Hibbert DB (2003) Protein electrochemistry using aligned carbon nanotube arrays. J Am Chem Soc 125(30):9006–9007

    Article  CAS  Google Scholar 

  • Guilbault GG, Pravda M, Kreuzer M (2004) Biosensors – 42 years and counting. Anal Lett 37:14481–14496

    Article  Google Scholar 

  • Guo S, Wang E (2007) Synthesis and electrochemical applications of gold nanoparticles. Anal Chim Acta 598(2):181–192

    Article  CAS  Google Scholar 

  • Guo J, Chai Y, Yuan R, Song Z, Zou Z (2011) Lead (II) carbon paste electrode based on derivatized multi-walled carbon nanotubes: application to lead content determination in environmental samples. Sensors Actuators B 155:639–645

    Article  CAS  Google Scholar 

  • Haruyama T (2003) Micro- and nanobiotechnology for biosensing cellular responses. Adv Drug Dell Rev 55(3):393–401

    Article  CAS  Google Scholar 

  • Haun JB, Yoon TJ, Lee H, Weissleder R (2010) Magnetic nanoparticle biosensors. Nanomed Nanobiotechnol 2(3):291–304

    Article  CAS  Google Scholar 

  • He B, Morrow TJ, Keating CD (2008) Nanowire sensors for multiplexed detection of biomolecules. Curr Opin Chem Biol 2(5):522–528

    Article  CAS  Google Scholar 

  • Hochella MF (2002) Nanoscience and technology the next revolution in the earth sciences. Earth Planet Sci Lett 203:593–605

    Article  CAS  Google Scholar 

  • Hong S, Kang T, Oh S, Moon J, Choi I, Choi K, Yi J (2008) Label-free sensitive optical detection of polychlorinated biphenyl (PCB) in an aqueous solution based on surface plasmon resonance measurements. Sensors Actuators B 134:300–306

    Article  CAS  Google Scholar 

  • Hrapovic S (2004) Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes. Anal Chem 76(4):1083–1088

    Article  CAS  Google Scholar 

  • Huang Y, Zhang W, Xiao H, Li G (2005) An electrochemical investigation of glucose oxidase at a CdS nanoparticlesmodified electrode. Biosens Bioelectron 21(5):817–821

    Article  CAS  Google Scholar 

  • Huang H, Li L, Zhou GH, Liu ZH, Ma Q, Feng YQ, Zeng GP, Tinnefeldc P, He ZK (2011) Visual detection of melamine in milk samples based on label-free and labelled gold nanoparticles. Talanta 85:1013–1019

    Article  CAS  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  • Jain KK (2003) Nanodiagnostics: application of nanotechnology in molecular diagnostics. Exp Rev Mol Diagn 3(2):153–161

    Article  CAS  Google Scholar 

  • Jianrong C, Yuqing M, Nongyue H, Xiaohua W (2004) Nanotechnology and biosensors. Biotechnol Adv 22:505–518

    Article  CAS  Google Scholar 

  • Jin RC, Wu GS, Li Z, Mirkin CA, Schatz GC (2003) What controls the melting properties of DNA-linked gold nanoparticle assemblies? J Am Chem Soc 125(6):1643–1654

    Article  CAS  Google Scholar 

  • Kabashin AV, Evans P, Pastkovsky S, Hendren W, Wurtz GA, Atkinson R, Pollard R, Podolskiy VA, Zayats AV (2009) Plasmonic nanorod metamaterials for biosensing. Nat Mater 8(11):867–871. https://doi.org/10.1038/nmat2546

    Article  CAS  Google Scholar 

  • Katz E, Willner I, Wang J (2004) Electroanalytical and bioelectroanalytical systems based on metal and semiconductor nanoparticles. Electroanalysis 16(1–2):19–44

    Article  CAS  Google Scholar 

  • Kim YR (2010) Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes. Biosens Bioelectron 25(10):2366–2369

    Article  CAS  Google Scholar 

  • Ko S, Gunasekaran S, Yu J (2010) Self-indicating nanobiosensor for detection of 2,4-dinitrophenol. Food Control 21:155–161

    Article  CAS  Google Scholar 

  • Kumar VV, Anthony SP (2014) Silver nanoparticles based selective colorimetric sensor for Cd2+, Hg2+ and Pb2+ ions: tuning sensitivity and selectivity using co-stabilizingagents. Sensors Actuators B 191:31–36

    Article  CAS  Google Scholar 

  • Kuswandi B, Mascini M (2005) Enzyme inhibition based biosensors for environmental monitoring. Curr Enzym Inhib 1:11–21

    Article  Google Scholar 

  • Kuswandi B, Swandari NW (2007) Simple and sensitive flow injection optical fibre biosensor based on immobilised enzyme for monitoring of pesticides. Senses Trans 76:978–986

    Google Scholar 

  • Kuswandi B, Fikriyah CI, Gani AA (2008) An optical fiber biosensor for chlorpyrifos using a single sol–gel film containing acetylcholinesterase and bromothymol blue. Talanta 74:613–622

    Article  CAS  Google Scholar 

  • Laschi S, Mascini M, Scortichin G, Fraanek M, Mascini M (2003) Polychlorinated biphenyls (PCBs) detection in food samples using an electrochemical immunosensor. J Agric Food Chem 51:1816–1822

    Article  CAS  Google Scholar 

  • Lee CH, Tian L, Singamaneni S (2010) Paper-based SERS swab for rapid trace detection on real-world surfaces. ACS Appl Mater Interfaces 2:3429–3435

    Article  CAS  Google Scholar 

  • Li Y-L, Leng Y-M, Zhang Y-J, Li T-H, Shen Z-Y, Wu A-G (2014) A new simple and reliable Hg2+ detection system based on anti-aggregation of unmodified gold nanoparticles in the presence of O-phenylenediamine. Sensors Actuators B 200:140–146

    Article  CAS  Google Scholar 

  • Ligler FS, Taitt CR, Shriver-Lake LC, Sapsford KE, Shubin Y, Golden JP (2003) Array biosensor for detection of toxins. Anal Bioanal Chem 377:469–477

    Article  CAS  Google Scholar 

  • Lisa M, Chouhan RS, Vinayaka AC, Manonmani HK, Thakur MS (2009) Gold nanoparticles based dipstick immunoassay for the rapid detection of dichlorodiphenyltrichloroethane: an organochlorine pesticide. Biosens Bioelectron 25:224–227

    Article  CAS  Google Scholar 

  • Liu J, Lu Y (2003) A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. J Am Chem Soc 125:6642–6643

    Article  CAS  Google Scholar 

  • Liu T, Tang J, Jiang L (2004) The enhancement effect of gold nanoparticles as a surface modifier on DNA sensor sensitivity. Biochem Biophys Res Commun 313(1):3–7

    Article  CAS  Google Scholar 

  • Liu X, Germaine KJ, Ryan D, Dowling DN (2007) Development of a GFP-based biosensor for detecting the bioavailability and biodegradation of polychlorinated biphenyls (PCBs). J Environ Eng Lands Manag 15:261–268

    Google Scholar 

  • Liu X, Germaine KJ, Ryan D, Dowling DN (2010) Genetically modified pseudomonas biosensing biodegraders to detect PCB and chlorobenzoate bioavailability and biodegradation in contaminated soils. Bioeng Bugs 1:198–206

    Article  Google Scholar 

  • Luo X, Morrin A, Killard AJ, Smyth MR (2006) Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis 18(4):319–326

    Article  CAS  Google Scholar 

  • Luo Y, Guo W, Ngo HH, Nghiem LD, Hai FI, Zhang J, Liang S (2014) A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci Total Environ 473–474(March):619–641

    Article  CAS  Google Scholar 

  • Luz RAS, Iost RM, Crespilho FN (2013) Nanobioelectrochemistry. Springer-Verlag, Berlin

    Google Scholar 

  • Lvov YM, Lu ZQ, Schenkman JB, Zu XL (1998) Direct electrochemistry of myoglobin and cytochrome P450cam in alternate layer-by-layer films with DNA and other polyions. J Am Chem Soc 120(17):4073–4080

    Article  CAS  Google Scholar 

  • MacKenzie R, Auzelyte V, Olliges S et al (2009) Nanowire development and characterization for applications in biosensing. Nanosystem Des Technol: 143–173

    Google Scholar 

  • Mailu SN, Waryo TT, Ndangili PM, Ngece FR, Baleg AA, Baker PG, Iwuoha EI (2010) Determination of anthracene on Ag-Au alloy nanoparticles/overoxidized-polypyrrole composite modified glassy carbon electrodes. Sensors 10:9449–9465

    Article  CAS  Google Scholar 

  • Mascini M, Macagnano A, Monti D, Del Carlo M, Paolesse R, Chen B, Warner P, D’Amico A, Di Natale C, Compagnone D (2004) Piezoelectric sensors for dioxins: a biomimetic approach. Biosens Bioelectron 20:1203–1210

    Article  CAS  Google Scholar 

  • Mascini M, Macagnano A, Scortichini G, Del Carlo M, Diletti G, D’Amico A, Di Natale C, Compagnone D (2005) Biomimetic sensors for dioxins detection in food samples. Sensors Actuators B 111–112:376–384

    Article  CAS  Google Scholar 

  • Merkoci A, Aldavert M, Marın S et al (2005) New materials for electrochemical sensing. V: nanoparticles for DNA labeling. Trends Anal Chem 24:341–349

    Article  CAS  Google Scholar 

  • Muhammad A, Yusof NA, Hajian R, Abdullah J (2016) Construction of an electrochemical sensor based on carbon nanotubes/gold nanoparticles for trace determination of amoxicillin in bovine milk. Sensors 16(56):1–13. https://doi.org/10.3390/s16010056

    Article  CAS  Google Scholar 

  • Musameh M, Wang J, Merkoci A, Lin Y (2002) Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrode. Electrochem Commun 4(10):743–746

    Article  CAS  Google Scholar 

  • Nagatani N, Takeuchi A, Hossain MA, Yuhi T, Endo T, Kerman K et al (2007) Rapid and sensitive visual detection of residual pesticides in food using acetyl-cholinesterase-based disposable membrane chips. Food Control 18:914–920

    Article  CAS  Google Scholar 

  • Niemeyer CM (2001) Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew Chem Int Ed 40:4129–4158

    Google Scholar 

  • Norouzi P, Pirali-Hamedani M, Ganjali MR, Faridbod F (2010) A novel acetylcholinesterase biosensor based on chitosan-gold nanoparticles film for determination of monocrotophos using FFT continuous cyclic voltammetry. Int J Electrochem Sci 5:1434–1446

    CAS  Google Scholar 

  • Pal S, Alocilja EC, Downes FP (2007) Nanowire labeled direct-charge transfer biosensor for detecting bacillus species. Biosens Bioelectron 22(9):2329–2336

    Article  CAS  Google Scholar 

  • Park KW (2002) Chemical and electronic effects of Ni in Pt/Ni and Pt/Ru/Ni alloy nanoparticles in methanol electrooxidation. J Phys Chem B 106:1869–1877

    Article  CAS  Google Scholar 

  • Park J-W, Kurosawa S, Aizawa H, Hamano H, Harada Y, Asano S, Mizushima Y, Higaki M (2006) Dioxin immunosensor using anti-2,3,7,8-TCDD antibody which was produced with mono 6-(2,3,6,7-tetrachloroxanthene-9-ylidene) hexyl succinate as a hapten. Biosens Bioelectron 22:409–414

    Article  CAS  Google Scholar 

  • Peng C, Li Z, Zhu Y, Chen W, Yuan Y, Liu L, Li Q et al (2009) Simultaneous and sensitive determination of multiplex chemical residues based on multicolor quantum dot probes. Biosens Bioelectron 24:3657–3662

    Article  CAS  Google Scholar 

  • Pribyl J, Hepel M, Skladal P (2006) Piezoelectric immunosensors for polychlorinated biphenyls operating in aqueous and organic phases. Sensors Actuators B 113:900–910

    Article  CAS  Google Scholar 

  • Promphet N, Rattanarat P, Rangkupan R, Chailapakul O, Rodthongkum N (2015) An electrochemical sensor based ongraphene/polyaniline/polystyrene nanoporous fibers modifiedelectrode for simultaneous determination of lead and cadmium. Sensors Actuators B 207:526–534

    Article  CAS  Google Scholar 

  • Pumera M (2010) Graphene-based nanomaterials and their electrochemistry. Chem Soc Rev 39(11):4146–4157

    Article  CAS  Google Scholar 

  • Qu F, Yang M, Lu Y, Shen G, Yu R (2006) Amperometric determination of bovine insulin based on synergic action of carbon nanotubes and cobalt hexacyanoferrate nanoparticles stabilized by EDTA. Anal Bioanal Chem 386(2):228–234

    Article  CAS  Google Scholar 

  • Ramanathan S, Patibandla S, Bandyopadhyay S, Edwards JD, Anderson J (2006) Fluorescence and infrared spectroscopy of electrochemically self assembled ZnO nanowires: evidence of the quantum confined Stark effect. J Mater Sci 17(9):651–655

    CAS  Google Scholar 

  • Ravindran A, Elavarasi M, Prathna TC, Raichur AM, Chandrasekaran N, Mukherjee A (2012) Selective colorimetric detection of nanomolar Cr (VI) in aqueous solutions using unmodified silver nanoparticles. Sensors Actuators B 166–167:365–371

    Article  CAS  Google Scholar 

  • Richardson SD, Ternes TA (2011) Water analysis: emerging contaminants and current issues. Anal Chem 83:4614–4648. https://doi.org/10.1021/ac200915r

    Article  CAS  Google Scholar 

  • Rivas GA, Rubianes MD, Rodriguez MC, Ferreyra NF, Luque GL, Pedano ML, Miscoria SA, Parado C (2007) Carbon nanotubes for electrochemical biosensing. Talanta 74(3):291–307

    Article  CAS  Google Scholar 

  • Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105(4):1547–1562

    Article  CAS  Google Scholar 

  • Rusling JF, Sotzing G, Papadimitrakopoulosa F (2009) Designing nanomaterial-enhanced electrochemical immunosensors for cancer biomarker proteins. Bioelectrochemistry 76(1–2):189–194

    Article  CAS  Google Scholar 

  • Salimi A, Hallaj R, Soltanian S (2009) Fabrication of a sensitive cholesterol biosensor based on cobalt-oxide nanostructures electrodeposited onto glassy carbon electrode. Electroanalysis 21(24):2693–2700

    Article  CAS  Google Scholar 

  • Sanguansri P, Augustin MA (2006) Nanoscale materials development- a food industry perspective. Trends Food Sci Technol 17:547–556

    Article  CAS  Google Scholar 

  • Sharma A, Matharu Z, Sumana G, Solanki PR, Kim CG, Malhotra BD (2010) Antibody immobilized cysteamine functionalized-gold nano particles for aflatoxin detection. Thin Solid Films 519:1213–1218

    Article  CAS  Google Scholar 

  • Shen X, Cui Y, Pang Y, Qian H (2012) Graphene oxide nanoribbon and polyhedral oligomeric silsesquioxane assembled composite frameworks for pre-concentrating and electrochemical sensing of 1-hydroxypyrene. Electrochim Acta 59:91–99

    Article  CAS  Google Scholar 

  • So HM, Park DW, Jeon EK, Kim YH, Kim BS, Lee CK, Choi SY, Kim SC, Chang H, Lee JO (2008) Detection and titer estimation of Escherichia coli using aptamer functionalized Single-walled Carbon-nano tube Field-effect Transistors. Small 4:197–201

    Article  CAS  Google Scholar 

  • Soh N, Tokuda T, Watanabe T, Mishima K, Imato T, Masadome T, Asano Y, Okutani S, Niwa O, Brown S (2003) A surface plasmon resonance immunosensor for detecting a dioxin precursor using a gold binding polypeptide. Talanta 60:733–745

    Article  CAS  Google Scholar 

  • Somerset VS, Klink MJ, Baker PGL, Iwuoha EI (2007) Acetylcholinesterase polyaniline biosensor investigation of organophosphate pesticides in selected organic solvents. J Environ Sci Health B 42:297–304

    Article  CAS  Google Scholar 

  • Somerset V, Baker P, Iwuoha E (2009) Mercaptobenzothiazole-on-gold organic phase biosensor systems: 1. Enhanced organosphosphate pesticide determination. J Environ Sci Health B 44:164–178

    Article  CAS  Google Scholar 

  • Song KM, Jeong E, Jeon W, Cho M, Ban C (2012) Aptasensor for ampicillin using gold nanoparticle based dual fluorescence–colorimetric methods. Anal Bioanal Chem 402:2153–2161

    Article  CAS  Google Scholar 

  • Sotiropoulou S, Gavalas V, Vamvakaki V, Chaniotakis NA (2003) Novel carbon materials in biosensor systems. Biosens Bioelectron 18(2–3):211–215

    Article  CAS  Google Scholar 

  • Stern E, Klemic JF, Routenberg DA et al (2007) Label free immunodetection with CMOS-compatible semiconducting nanowires. Nature 445(7127):519–522

    Article  CAS  Google Scholar 

  • Su M, Li S, Dravida VP (2003) Microcantilever resonance-based DNA detection with nanoparticle probes. Appl Phys Lett 82:3562–3567

    Article  CAS  Google Scholar 

  • Sugunan A, Thanachayanont C, Dutta J, Hilborn J (2005) Heavy-metal ion sensors using chitosan-capped gold nanoparticles. Sci Technol Adv Mater 6:335–340

    Article  CAS  Google Scholar 

  • Tsutsumi T, Miyoshi N, Sasaki K, Maitani T (2008) Biosensor immunoassay for the screening of dioxin-like polychlorinated biphenyls in retail fish. Anal Chim Acta 617:177–183

    Article  CAS  Google Scholar 

  • Turner AP (2000) Biosensors-sense and sensitivity. Science 290:1315–1317

    Article  CAS  Google Scholar 

  • Vamvakaki V, Chaniotakis NA (2007) Pesticide detection with a liposome-based nano-biosensor. Biosens Bioelectron 22:2848–2853

    Article  CAS  Google Scholar 

  • Verma ML (2017) Nanobiotechnology advances in enzymatic biosensors for the agri-food industry. Environ Chem Lett: 1–6

    Google Scholar 

  • Vijayakumar CS, Venkatakrishnan K, Tan B (2017) SERS active nanobiosensor functionalized by self-assembled 3D nickel nanonetworks for glutathione detection. ACS Appl Mater Interfaces 9(6):5077–5091

    Article  CAS  Google Scholar 

  • Vo-Dinh T, Cullum BM, Stokes DL (2001) Nanosensors and biochips: frontiers in biomolecular diagnostics. Sensors Actuators B 74(1–3):2–11

    Article  CAS  Google Scholar 

  • Wan H, Sun Q, Li H, Sun F, Hu N, Wang P (2015) Screen-printed gold electrode with gold nanoparticles modificationfor simultaneous electrochemical determination of lead and copper. Sensors Actuators B 209:336–342

    Article  CAS  Google Scholar 

  • Wang J (2003) Nanoparticle-based electrochemical DNA detection. Anal Chim Acta 500(1–2):247–257

    CAS  Google Scholar 

  • Wang J (2005) Nanomaterial-based electrochemical biosensors. Analyst 130:421–426

    Article  CAS  Google Scholar 

  • Wang J, Xu D, Kawde AN, Polsky R (2001) Metal nanoparticle based electrochemical stripping potentiometric detection of DNA hybridization. Anal Chem 73:5576–5581

    Article  CAS  Google Scholar 

  • Wang J, Liu G, Polsky R, Merkoci A (2002) Electrochemical stripping detection of DNA hybridization based on cadmium sulfide nanoparticle tags. Electrochem Commun 4(9):722–726

    Article  CAS  Google Scholar 

  • Wang J, Kawde A, Mustafa M (2003) Carbon-nanotube-modified glassy carbon electrodes for amplified label-free electrochemical detection of DNA hybridization. Analyst 128:912–916

    Article  CAS  Google Scholar 

  • Wang L, Chen W, Xu D, Shim BS, Zhu Y, Sun F, Kotov NA (2009) Simple, rapid, sensitive, and versatile SWNT− Paper sensor for environmental toxin detection competitive with ELISA. Nano Lett 9(12):4147–4152

    Article  CAS  Google Scholar 

  • Wang Z, Zhang J, Ekman JM, Kenis PJ, Lu Y (2010) DNA-mediated control of metal nanoparticle shape: one-pot synthesis and cellular uptake of highly stable and functional gold nanoflowers. Nano Lett 10(5):1886–1891

    Article  CAS  Google Scholar 

  • Wei Y, Gao C, Meng F-L, Li H-H, Wang L, Liu J-H, Huang X-J (2012) SnO2/reduced graphene oxide nanocomposite for the simultaneous electrochemical detection of cadmium(II), lead(II), copper(II), and mercury(II): an interesting favorable mutual interference. J Phys Chem C 116:1034–1041

    Article  CAS  Google Scholar 

  • Wei H, Abtahi SMH, Vikesland PJ (2015) Plasmonic colorimetric and SERS sensors for environmental analysis. Environ Sci Nano 2:120–135

    Article  CAS  Google Scholar 

  • Xia V, Hung W, Zhang J, Niu Z, Li Z (2011) Nonenzymatic amperometric response of glucose on a nanoporous gold film electrode fabricated by a rapid and simple electrochemical method. Biosens Bioelectron 26:3555–3561

    Article  CAS  Google Scholar 

  • Yanez-Sedeno P, Pingarron JM (2005) Gold nanoparticle-based electrochemical biosensors. Anal Bioanal Chem 382:884–886

    Article  CAS  Google Scholar 

  • Yang H, Qu L, Wimbrow AN, Jiang X, Sun Y (2007) Rapid detection of Listeria monocytogenes by nanoparticle-based immunomagnetic separation and real-time PCR. Int J Food Microbiol 118(2):132–138

    Article  CAS  Google Scholar 

  • Yih TC, Al-Fandi M (2006) Engineered nanoparticles as precise drug delivery systems. J Cell Biochem 97:1184–1190

    Article  CAS  Google Scholar 

  • Yılmaz E, Özgürb E, Bereli N, Türkmen D, Denizli A (2017) Plastic antibody based surface plasmon resonance nanosensors for selective atrazine detection. Mater Sci Eng C 73(1):603–610

    Article  CAS  Google Scholar 

  • Yu X, Chattopadhyay D, Galeska I, Papadimitrakopoulos F, Rusling JF (2003) Peroxidase activity of enzymes bound to the ends of single-wall carbon nanotube forest electrodes. Electochem Commun 5(5):408–411

    Article  CAS  Google Scholar 

  • Zhang B, Zhang ZJ, Wang B, Yan J, Li JJ, Cai SM (2001) A study of designed current oscillations of Fe in H2SO4 solution. Acta Chim Sin 59:1932

    CAS  Google Scholar 

  • Zhao Q, Gan Z, Zhuang Q (2002a) Electrochemical sensors based on carbon nanotubes. Electroanalysis 14:1609–1613

    Article  CAS  Google Scholar 

  • Zhao Y-D, Zhang W-D, Chen H, Luo Q-M, Li SFY (2002b) Direct electrochemistry of horseradish peroxidase at carbon nanotube powder microelectrode. Sensors Actuators B 87(1):168–172

    Article  CAS  Google Scholar 

  • Zhao G, Wang H, Liu G, Wang Z (2016) Simultaneous determination of Cd(II) and Pb(II) based on bismuth film/carboxylic acid functionalized multi-walled carbon nanotubes-β-cyclodextrin-Nafion nanocomposite modified electrode. Int J Electrochem Sci 11:8109–8122. https://doi.org/10.20964/2016.10.07

    Article  CAS  Google Scholar 

  • Zheng W, Zhao HY, Zhang JX, Zhou HM, Xu XX, Zheng YF, Wang YB, Cheng Y, Jang BZ (2010) A glucose/O2 biofuel cell base on nanographene platelet-modified electrodes. Electrochem Commun 12(7):869–871

    Article  CAS  Google Scholar 

  • Zhou Y, Zhao H, He Y, Ding N, Cao Q (2011) Colorimetric detection of Cu2+ using 4-mercaptobenzoic acid modified silver nanoparticles. Colloid Surf A: Physicochem Eng Aspects 391:179–183

    Article  CAS  Google Scholar 

  • Zhou Y, Dong H, Liu L, Li M, Xiao K, Xu M (2014) Selective and sensitive colorimetric sensor of mercury (II) based ongold nanoparticles and 4-mercaptophenylboronic acid. Sensors Actuators B 196:106–111

    Article  CAS  Google Scholar 

  • Zhu N, Zhang A, He P, Fang Y (2003) Cadmium sulfide nanocluster-based electrochemical stripping detection of DNA hybridization. Analyst 128(3):260–264

    Article  CAS  Google Scholar 

  • Zhu H, Xu Y, Liu A, Kong N, Shan F, Yang W, Barrow CJ, Liu J (2015) Graphene nanodots-encaged porous gold electrode fabricated via ion beam sputtering deposition for electrochemical analysis of heavy metal ions. Sensors Actuators B 206:592–600

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author gratefully thank the DRPM, Ministry of Research, Technology and Higher Education, the Republic of Indonesia for supporting this work via International Research Collaboration and Scientific Publication 2017 (Hibah Penelitian Kerjasama Luar Negeri dan Publikasi Internasional 2017) and thank to Prof. M. Ahmad, FST USIM Malaysisa, for valuable discussion regarding this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bambang Kuswandi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kuswandi, B. (2018). Nanobiosensors for Detection of Micropollutants. In: Dasgupta, N., Ranjan, S., Lichtfouse, E. (eds) Environmental Nanotechnology. Environmental Chemistry for a Sustainable World, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-319-76090-2_4

Download citation

Publish with us

Policies and ethics