Skip to main content
Log in

Aptasensor for environmental monitoring

  • Mini review
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

Aptamers are single-stranded oligonucleotides (DNA or RNA) capable of folding into well-defined structures and motifs that allow them bind to various target molecules with high specificity and affinity. The crucial ability of aptamers is interaction with a given target from small ions to molecular level that makes them useful in many applications for specific detection of various analytes. Nowadays aptamer is an effective tool not only for in vitro research in diagnostic methods, drug delivery and treatment therapy, but also for the development of nucleic-acid-based sensors in industrial waste management, pollution control and environmental toxicology. This mini review is focused on discussion and updating about the global researches in nucleic-acid-based sensors for environmental issues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ellington, A. D. & Szostak, J. W. In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818–822 (1990).

    Article  CAS  PubMed  Google Scholar 

  2. Tuerk, C. & Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505–510 (1990).

    Article  CAS  PubMed  Google Scholar 

  3. Song, K. M., Lee, S. & Ban, C. Aptamers and their biological applications. Sensors (Basel) 12, 612–631 (2012).

    Article  Google Scholar 

  4. Zhou, J. & Rossi, J. J. Aptamer-targeted cell-specific RNA interference. Silence 1, 4 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Fang, X. & Tan, W. Aptamers generated from cell-SELEX for molecular medicine: a chemical biology approach. Acc. Chem. Res. 43, 48–57 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ohuchi, S. Cell-SELEX Technology. Biores. Open Access 1, 265–272 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Meyer, S. et al. Development of an efficient targeted cell-SELEX procedure for DNA aptamer reagents. PLoS One 8, e71798 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Marimuthu, C., Tang, T. H., Tominaga, J., Tan, S. C. & Gopinath, S. C. Single-stranded DNA (ssDNA) production in DNA aptamer generation. Analyst 137, 1307–1315 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Dua, P., Kim, S. & Lee, D. K. Nucleic acid aptamers targeting cell-surface proteins. Methods 54, 215–225 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Kong, H. Y. & Byun, J. Nucleic Acid aptamers: new methods for selection, stabilization, and application in biomedical science. Biomol. Ther. (Seoul) 21, 423–434 (2013).

    Article  Google Scholar 

  11. Mayer, G. et al. Fluorescence-activated cell sorting for aptamer SELEX with cell mixtures. Nat. Protoc. 5, 1993–2004 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Lee, K.-A. et al. Aptamer-based sandwich assay and its clinical outlooks for detecting lipocalin-2 in hepatocellular carcinoma (HCC). Sci. Rep. 5, 10897 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee, S.-H. et al. Analytical bioconjugates, aptamers, enable specific quantitative detection of Listeria monocytogenes. Biosens. Bioelectron. 68, 272–280 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Wu, X., Chen, J., Wu, M. & Zhao, J. X. Aptamers: active targeting ligands for cancer diagnosis and therapy. Theranostics 5, 322–344 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Marolt, U., Cencic, A., Gorenjak, M. & Potrc, S. Generating Aptamers for Cancer Diagnosis and Therapy. Clin. Exp. Pharmacol. Physiol. 02, doi:10.4172/2161-1459.1000111 (2012).

    Google Scholar 

  16. Germer, K., Leonard, M. & Zhang, X. RNA aptamers and their therapeutic and diagnostic applications. Int. J. Biochem. Mol. Biol. 4, 27–40 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Simmons, S. C. et al. Anti-heparanase aptamers as potential diagnostic and therapeutic agents for oral cancer. PLoS One 9, e96846 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Huang, D.-B. et al. Crystal structure of NF-κB (p50) 2 complexed to a high-affinity RNA aptamer. Proc. Natl. Acad. Sci. USA 100, 9268–9273 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Farokhzad, O. C. et al. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc. Natl. Acad. Sci. USA 103, 6315–6320 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tang, Z., Parekh, P., Turner, P., Moyer, R. W. & Tan, W. Generating aptamers for recognition of virus-infected cells. Clin. Chem. 55, 813–822 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Collett, J. R., Cho, E. J. & Ellington, A. D. Production and processing of aptamer microarrays. Methods 37, 4–15 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Bock, C. et al. Photoaptamer arrays applied to multiplexed proteomic analysis. Proteomics 4, 609–618 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Sekhon, S. S. et al. Advances in pathogen-associated molecules detection using Aptamer based biosensors. MCT 9, 311–317 (2013).

    CAS  Google Scholar 

  24. Yarus, M. How many catalytic RNAs? Ions and the Cheshire cat conjecture. FASEB J. 7, 31–39 (1993).

    CAS  PubMed  Google Scholar 

  25. Pyle, A. M. Ribozymes: a distinct class of metalloenzymes. Science 261, 709–714 (1993).

    Article  CAS  PubMed  Google Scholar 

  26. Conrad, R. C., Giver, L., Tian, Y. & Ellington, A. D. in Methods in Enzymology Volume 591 (Academic Press, United States, 1996).

    Google Scholar 

  27. Higuchi, R. G. & Ochman, H. Production of single-stranded DNA templates by exonuclease digestion following the polymerase chain reaction. Nucleic Acids Res. 17, 5865 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hultman, T., Stahl, S., Homes, E. & Uhlen, M. Direct solid phase sequencing of genomic and plasmid DNA using magnetic beads as solid support. Nucleic Acids Res. 17, 4937–4946 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Williams, K. P. & Bartel, D. P. PCR product with strands of unequal length. Nucleic Acids Res. 23, 4220–4221 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Breaker, R. R. Are engineered proteins getting competition from RNA? Curr. Opin. Biotechnol. 7, 442–448 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Tang, J. & Breaker, R. R. Rational design of allosteric ribozymes. Chem. Biol. 4, 453–459 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Penchovsky, R. Computational design of allosteric ribozymes as molecular biosensors. Biotechnol. Adv. 32, 1015–1027 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Breaker, R. R. Engineered allosteric ribozymes as biosensor components. Curr. Opin. Biotechnol. 13, 31–39 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Sook Bang, G. et al. Rational design of modular allosteric aptamer sensor for label-free protein detection. Biosens. Bioelectron. 39, 44–50 (2013).

    Article  CAS  Google Scholar 

  35. Joyce, G. F. Directed evolution of nucleic acid enzymes. Annu. Rev. Biochem. 73, 791–836 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Breaker, R. R. & Joyce, G. F. A DNA enzyme with Mg2+-dependent RNA phosphoesterase activity. Chem. Biol. 2, 655–660 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. O’Sullivan, C. K. Aptasensors -the future of biosensing? Anal. Bioanal. Chem. 372, 44–48 (2002).

    Article  PubMed  Google Scholar 

  38. Song, S., Wang, L., Li, J., Fan, C. & Zhao, J. Aptamer-based biosensors. Trends Anal. Chem. 27, 108–117 (2008).

    Article  CAS  Google Scholar 

  39. Ostatná, V., Vaisocherová, H., Homola, J. & Hianik, T. Effect of the immobilisation of DNA aptamers on the detection of thrombin by means of surface plasmon resonance. Anal. Bioanal. Chem. 391, 1861–1869 (2008).

    Article  PubMed  Google Scholar 

  40. Hianik, T. & Wang, J. Electrochemical aptasensors - recent achievements and perspectives. Electroanalysis 21, 1223–1235 (2009).

    Article  CAS  Google Scholar 

  41. Lu, Y. et al. New highly sensitive and selective catalytic DNA biosensors for metal ions. Biosens. Bioelectron. 18, 529–540 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Breaker, R. R. Catalytic DNA: in training and seeking employment. Nat. Biotechnol. 17, 422–423 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Chow, C. S. & Bogdan, F. M. A structural basis for RNA-ligand interactions. Chem. Rev. 97, 1489–1514 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Nowakowski, J., Shim, P. J., Prasad, G. S., Stout, C. D. & Joyce, G. F. Crystal structure of an 82-nucleotide RNA-DNA complex formed by the 10-23 DNA enzyme. Nat. Struct. Mol. Biol. 6, 151–156 (1999).

    Article  CAS  Google Scholar 

  45. Ferguson, J. A., Steemers, F. J. & Walt, D. R. High-density fiber-optic DNA random microsphere array. Anal. Chem. 72, 5618–5624 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Taylor, L. C. & Walt, D. R. Application of high-density optical microwell arrays in a live-cell biosensing system. Anal. Biochem. 278, 132–142 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Li, J. & Lu, Y. A highly sensitive and selective catalytic DNA biosensor for lead ions. J. Am. Chem. Soc. 122, 10466–10467 (2000).

    Article  CAS  Google Scholar 

  48. Klopman, G. in Chemical reactivity and reaction paths (Wiley, United States, 1974).

    Google Scholar 

  49. Da Silva, J. F. & Williams, R. J. P. in The biological chemistry of the elements: the inorganic chemistry of life (Oxford University Press, United Kingdom, 2001).

    Google Scholar 

  50. Neiboer, E & Richardson, D. H. S. The replacement of the nondescript term ‘heavy metals’ by biologically and chemically significant classification of metal. Environmental Pollution Series B, Chemical and Physical. 1, 3–26 (1980).

    Article  Google Scholar 

  51. Needleman, H. Lead poisoning. Annu. Rev. Med. 55, 209–222 (2004).

  52. Liu, J. & Lu, Y. A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. J. Am. Chem. Soc. 125, 6642–6643 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Hoyle, I. & Handy, R. Dose-dependent inorganic mercury absorption by isolated perfused intestine of rainbow trout, Oncorhynchus mykiss, involves both amiloride-sensitive and energy-dependent pathways. Aquat. Toxicol. 72, 147–159 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Craft, E. S. et al. Depleted and natural uranium: chemistry and toxicological effects. J. Toxicol. Environ. Health Part B 7, 297–317 (2004).

    Article  CAS  Google Scholar 

  55. Georgopoulos, P. et al. A framework and data sources for the assessment of human exposures to copper: The US Situation, http://ccl.rutgers.edu/ccl-files/reports/ICA/ICA2002_copper2.pdf (2002).

    Google Scholar 

  56. Xiang, Y., Tong, A. & Lu, Y. Abasic site-containing DNAzyme and aptamer for label-free fluorescent detection of Pb2+ and adenosine with high sensitivity, selectivity, and tunable dynamic range. J. Am. Chem. Soc. 131, 15352–15357 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Liu, C.-W., Huang, C.-C. & Chang, H.-T. Highly selective DNA-based sensor for lead (II) and mercury (II) ions. Anal. Chem. 81, 2383–2387 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Lee, J. S., Han, M. S. & Mirkin, C. A. Colorimetric Detection of Mercuric Ion (Hg2+) in Aqueous Media using DNA-Functionalized Gold Nanoparticles. Angew. Chem. 46, 4093–4096 (2007).

    Article  CAS  Google Scholar 

  59. Wang, Y., Yang, F. & Yang, X. Colorimetric biosensing of mercury (II) ion using unmodified gold nanoparticle probes and thrombin-binding aptamer. Biosens. Bioelectron. 25, 1994–1998 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Lee, J. H., Wang, Z., Liu, J. & Lu, Y. Highly sensitive and selective colorimetric sensors for uranyl (UO2 2+): Development and comparison of labeled and label-free DNAzyme-gold nanoparticle systems. J. Am. Chem. Soc. 130, 14217–14226 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yin, B.-C., Ye, B.-C., Tan, W., Wang, H. & Xie, C.-C. An allosteric dual-DNAzyme unimolecular probe for colorimetric detection of copper (II). J. Am. Chem. Soc. 131, 14624–14625 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kim, M. et al. Arsenic removal from Vietnamese groundwater using the arsenic-binding DNA aptamer. Environ. Sci. Technol. 43, 9335–9340 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Wei, F. & Ho, C.-M. Aptamer-based electrochemical biosensor for Botulinum neurotoxin. Anal. Bioanal. Chem. 393, 1943–1948 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Zhou, L., Li, D.-J., Gai, L., Wang, J.-P. & Li, Y.-B. Electrochemical aptasensor for the detection of tetracycline with multi-walled carbon nanotubes amplification. Sens. Actuator B-Chem. 162, 201–208 (2012).

    Article  CAS  Google Scholar 

  65. Zhang, J. et al. Label-free electrochemical detection of tetracycline by an aptamer nano-biosensor. Anal. Lett. 45, 986–992 (2012).

    Article  CAS  Google Scholar 

  66. Chen, D., Yao, D., Xie, C. & Liu, D. Development of an aptasensor for electrochemical detection of tetracycline. Food Control 42, 109–115 (2014).

    Article  Google Scholar 

  67. Cella, L. N. et al. Nano aptasensor for protective antigen toxin of anthrax. Anal. Chem. 82, 2042–2047 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Baeumner, A. J., Cohen, R. N., Miksic, V. & Min, J. RNA biosensor for the rapid detection of viable Escherichia coli in drinking water. Biosens. Bioelectron. 18, 405–413 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Sun, H., Choy, T., Zhu, D., Yam, W. & Fung, Y. Nano-silver-modified PQC/DNA biosensor for detecting E. coli in environmental water. Biosens. Bioelectron. 24, 1405–1410 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Cao, X. et al. Combining use of a panel of ssDNA aptamers in the detection of Staphylococcus aureus. Nucleic Acids Res. 37, 4621–4628 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Di Fusco, M., Tortolini, C., Frasconi, M. & Mazzei, F. Aptamer-based and DNAzyme-based biosensors for environmental monitoring. Int. J. Environ. Res. Public Health 5, 186–204 (2011).

    CAS  Google Scholar 

  72. Sett, A., Das, S. & Bora, U. Functional nucleic-acid-based sensors for environmental monitoring. Appl. Biochem. Biotechnol. 174, 1073–1091 (2014).

    Article  CAS  PubMed  Google Scholar 

  73. Xiao, Y., Lubin, A. A., Heeger, A. J. & Plaxco, K. W. Label-free electronic detection of thrombin in blood serum by using an aptamer-based sensor. Angew. Chem. 117, 5592–5595 (2005).

    Article  Google Scholar 

  74. Radi, A.-E., Acero Sánchez, J. L., Baldrich, E. & O’Sullivan, C. K. Reagentless, reusable, ultrasensitive electrochemical molecular beacon aptasensor. J. Am. Chem. Soc. 128, 117–124 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Mir, M. & Katakis, I. Aptamers as elements of bioelectronic devices. Mol. Biosyst. 3, 620–622 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Bang, G. S., Cho, S. & Kim, B.-G. A novel electrochemical detection method for aptamer biosensors. Biosens. Bioelectron. 21, 863–870 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. So, H.-M. et al. Single-walled carbon nanotube biosensors using aptamers as molecular recognition elements. J. Am. Chem. Soc. 127, 11906–11907 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Maehashi, K. et al. Label-free protein biosensor based on aptamer-modified carbon nanotube field-effect transistors. Anal. Chem. 79, 782–787 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. He, P., Shen, L., Cao, Y. & Li, D. Ultrasensitive electrochemical detection of proteins by amplification of aptamer-nanoparticle bio bar codes. Anal. Chem. 79, 8024–8029 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiho Min or Yang-Hoon Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, PL., Sekhon, S.S., Ahn, JY. et al. Aptasensor for environmental monitoring. Toxicol. Environ. Health Sci. 9, 89–101 (2017). https://doi.org/10.1007/s13530-017-0308-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-017-0308-2

Keywords

Navigation