Skip to main content

Advertisement

Log in

Thermostable Hemicellulases of a Bacterium, Geobacillus sp. DC3, Isolated from the Former Homestake Gold Mine in Lead, South Dakota

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A thermophilic strain, Geobacillus sp. DC3, capable of producing hemicellulolytic enzymes was isolated from the 1.5-km depth of the former Homestake gold mine in Lead, South Dakota. The DC3 strain expressed a high level of extracellular endoxylanase at 39.5 U/mg protein with additional hemicellulases including β-xylosidase (0.209 U/mg) and arabinofuranosidase (0.230 U/mg), after the bacterium was grown in xylan for 24 h. Partially purified DC3 endoxylanase exhibited a molecular mass of approximately 43 kDa according to zymography with an optimal pH of 7 and optimal temperature of 70 °C. The kinetic constants, K m and V max, were 13.8 mg/mL and 77.5 μmol xylose/min·mg xylan, respectively. The endoxylanase was highly stable and maintained 70 % of its original activity after 16 h incubation at 70 °C. The thermostable properties and presence of three different hemicellulases of Geobacillus sp. DC3 strain support its potential application for industrial hydrolysis of renewable biomass such as lignocelluloses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tai, S. K., Lin, H. P., Kuo, J., & Liu, J. K. (2004). Isolation and characterization of a cellulolytic Geobacillus thermoleovorans T4 strain from sugar refinery wastewater. Extremophiles, 8, 345–349.

    Article  CAS  Google Scholar 

  2. Wang, C. M., Shyu, C. L., Ho, S. P., & Chiou, S. H. (2007). Species diversity and substrate utilization patterns of thermophilic bacterial communities in hot aerobic poultry and cattle manure composts. Microbial Ecology, 54, 1–9.

    Article  Google Scholar 

  3. Rastogi, G., Muppidi, G. L., Gurram, R. N., Adhikari, A., Bischoff, K. M., Hughes, S. R., et al. (2009). Isolation and characterization of cellulose-degrading bacteria from the deep subsurface of the Homestake gold mine, Lead, South Dakota, USA. Journal of Industrial Microbiology and Biotechnology, 36, 585–598.

    Article  CAS  Google Scholar 

  4. Waddell, E. J., Elliott, T. J., Vahrenkamp, J. M., Roggenthen, W. M., Sani, R. K., Anderson, C. M., et al. (2010). Phylogenetic evidence of noteworthy microflora from the subsurface of the former Homestake gold mine, Lead, South Dakota. Environmental Technology, 31, 979–991.

    Article  CAS  Google Scholar 

  5. Rastogi, G., Bhalla, A., Adhikari, A., Bischoff, K. M., Hughes, S. R., Christopher, L. P., et al. (2010). Characterization of thermostable cellulases produced by Bacillus and Geobacillus strains. Bioresource Technology, 101, 8798–8806.

    Article  CAS  Google Scholar 

  6. Zambare, V. P., Bhalla, A., Muthukumarappan, K., Sani, R. K., & Christopher, L. P. (2011). Bioprocessing of agricultural residues to ethanol utilizing a cellulolytic extremophile. Extremophiles, 15, 611–618.

    Article  CAS  Google Scholar 

  7. Biely, P. (1985). Microbial xylanolytic systems. Trends in Biotechnology, 3, 286–290.

    Article  CAS  Google Scholar 

  8. Prade, R. A. (1996). Xylanases: from biology to biotechnology. Biotechnology and Genetic Engineering, 13, 101–131.

    Article  CAS  Google Scholar 

  9. Coughlan, M. P. and Hazlewood, G. P. (1993). Hemicellulose and hemicellulases. ed. Portland Press, London ; Chapel Hill, NC.

  10. Collins, T., Gerday, C., & Feller, G. (2005). Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiology Reviews, 29, 3–23.

    Article  CAS  Google Scholar 

  11. Subramaniyan, S., & Prema, P. (2002). Biotechnology of microbial xylanases: enzymology, molecular biology, and application. Critical Reviews in Biotechnology, 22, 33–64.

    Article  CAS  Google Scholar 

  12. Bayer, E. A., Setter, E., & Lamed, R. (1985). Organization and distribution of the cellulosome in Clostridium thermocellum. Journal of Bacteriology, 163, 552–559.

    CAS  Google Scholar 

  13. Ratanakhanokchai, K., Kyu, K. L., & Tanticharoen, M. (1999). Purification and properties of a xylan-binding endoxylanase from alkaliphilic Bacillus sp. strain K-1. Applied and Environmental Microbiology, 65, 694–697.

    CAS  Google Scholar 

  14. Howard, R. L., Abotsi, E., Jansen van Rensburg, E. L., & Howard, S. (2003). Lignocellulose biotechnology: issues of bioconversion and enzyme production. African Journal of Biotechnology, 2, 602–619.

    CAS  Google Scholar 

  15. Mach, R. L., & Zeilinger, S. (2003). Regulation of gene expression in industrial fungi: Trichoderma. Applied Microbiology and Biotechnology, 60, 515–522.

    Article  CAS  Google Scholar 

  16. Bakalova, N. G., Petrova, S. D., Atev, A. P., Bhat, M. K., & Kolev, D. N. (2002). Biochemical and catalytic properties of endo-1,4-β-xylanases from Thermomyces lanuginosus (wild and mutant strains). Biotechnology Letters, 24, 1167–1172.

    Article  CAS  Google Scholar 

  17. Krengel, U., & Dijkstra, B. W. (1996). Three-dimensional structure of Endo-1,4-beta-xylanase I from Aspergillus niger: molecular basis for its low pH optimum. Journal of Molecular Biology, 263, 70–78.

    Article  CAS  Google Scholar 

  18. Maalej, I., Belhaj, I., Masmoudi, N. F., & Belghith, H. (2009). Highly thermostable xylanase of the thermophilic fungus Talaromyces thermophilus: purification and characterization. Applied Biochemistry and Biotechnology, 158, 200–212.

    Article  CAS  Google Scholar 

  19. Jiang, Z. Q., Deng, W., Li, L. T., Ding, C. H., Kusakabe, I., & Tan, S. S. (2004). A novel, ultra-large xylanolytic complex (xylanosome) secreted by Streptomyces olivaceoviridis. Biotechnology Letters, 26, 431–436.

    Article  CAS  Google Scholar 

  20. Baba, T., Shinke, R., & Nanmori, T. (1994). Identification and characterization of clustered genes for thermostable xylan-degrading enzymes, beta-xylosidase and xylanase, of Bacillus stearothermophilus 21. Applied and Environmental Microbiology, 60, 2252–2258.

    CAS  Google Scholar 

  21. Mamo, G., Hatti-Kaul, R., & Mattiasson, B. (2006). A thermostable alkaline active endo-β-1,4-xylanase from Bacillus halodurans S7: purification and characterization. Enzyme and Microbial Technology, 39, 1492–1498.

    Article  CAS  Google Scholar 

  22. Shrinivas, D., Savitha, G., Raviranjan, K., & Naik, G. R. (2010). A highly thermostable alkaline cellulase-free xylanase from thermoalkalophilic Bacillus sp. JB 99 suitable for paper and pulp industry: purification and characterization. Applied Biochemistry and Biotechnology, 162, 2049–2057.

    Article  CAS  Google Scholar 

  23. Sharma, A., Adhikari, S., & Satyanarayana, T. (2007). Alkali-thermostable and cellulase-free xylanase production by an extreme thermophile Geobacillus thermoleovorans. World Journal of Microbiology and Biotechnology, 31, 51–56.

    CAS  Google Scholar 

  24. Khasin, A., Alchanati, I., & Shoham, Y. (1993). Purification and characterization of a thermostable xylanase from Bacillus stearothermophilus T-6. Applied and Environmental Microbiology, 59, 1725–1730.

    CAS  Google Scholar 

  25. Canakci, S., Inan, K., Kacagan, M., & Belduz, A. O. (2007). Evaluation of arabinofuranosidase and xylanase activities of Geobacillus spp. isolated from some hot springs in Turkey. Journal of Microbiology and Biotechnology, 17, 1262–1270.

    CAS  Google Scholar 

  26. Biely, P., Vrsanska, M., Tenkanen, M., & Kluepfel, D. (1997). Endo-β-xylanases families: differences in catalytic properties. Journal of Biotechnology, 57, 151.

    Article  CAS  Google Scholar 

  27. Saraswat, V., & Bisaria, V. S. (2000). Purification, characterization and substrate specificities of xylanase isoenzymes from Melanocarpus albomyces IIS 68. Bioscience Biotechnology and Biochemistry, 64, 1173–1180.

    Article  CAS  Google Scholar 

  28. van Dyk, J. S., Sakka, M., Sakka, K., & Pletschke, B. I. (2009). The cellulolytic and hemi-cellulolytic system of Bacillus licheniformis SVD1 and the evidence for production of a large multi-enzyme complex. Enzyme and Microbial Technology, 45, 372–378.

    Article  CAS  Google Scholar 

  29. Teplitsky, A., Mechaly, A., Stojanoff, V., Sainz, G., Golan, G., Feinberg, H., et al. (2004). Structure determination of the extracellular xylanase from Geobacillus stearothermophilus by selenomethionyl MAD phasing. Acta Crystallographica Section D: Biological Crystallography, 60, 836–848.

    Article  CAS  Google Scholar 

  30. Verma, D., & Satyanarayana, T. (2012). Cloning, expression and applicability of thermo-alkali-stable xylanase of Geobacillus thermoleovorans in generating xylooligosaccharides from agro-residues. Bioresource Technology, 107, 333–338.

    Article  CAS  Google Scholar 

  31. Wu, S., Liu, B., & Zhang, X. (2006). Characterization of a recombinant thermostable xylanase from deep-sea thermophilic Geobacillus sp. MT-1 in East Pacific. Applied Microbiology and Biotechnology, 72, 1210–1216.

    Article  CAS  Google Scholar 

  32. Viamajala, S., Peyton, B. M., Richards, L. A., & Petersen, J. N. (2007). Solubilization, solution equilibria, and biodegradation of PAH’s under thermophilic conditions. Chemosphere, 66, 1094–1106.

    Article  CAS  Google Scholar 

  33. Kasana, R. C., Salwan, R., Dhar, H., Dutt, S., & Gulati, A. (2008). A rapid and easy method for the detection of microbial cellulases on agar plates using gram’s iodine. Current Microbiology, 57, 503–507.

    Article  CAS  Google Scholar 

  34. Zhou, J., Bruns, M. A., & Tiedje, J. M. (1996). DNA recovery from soils of diverse composition. Applied and Environmental Microbiology, 62, 316–322.

    CAS  Google Scholar 

  35. Lane, D. J. (1991). in Nucleic acid techniques in bacterial systematic, (Stackebrandt, E. and Goodfellow, M., eds.), John Wiley and Sons, New York, pp. 115-175.

  36. Turner, S., Pryer, K. M., Miao, V. P. W., & Palmer, J. D. (1999). Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis1. Journal of Eukaryotic Microbiology, 46, 327–338.

    Article  CAS  Google Scholar 

  37. Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22, 4673–4680.

    Article  CAS  Google Scholar 

  38. Jukes, T. H. and Cantor, C. R. (1969). in Mammalian protein metabolism, (Munro, H. N., ed.), Academic Press, New York, pp. 21-132.

  39. Cole, J. R., Chai, B., Farris, R. J., Wang, Q., Kulam-Syed-Mohideen, A. S., McGarrell, D. M., et al. (2007). The ribosomal database project (RDP-II): introducing myRDP space and quality controlled public data. Nucleic Acids Research, 35, D169–D172.

    Article  CAS  Google Scholar 

  40. Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular and Biological Evolution, 24, 1596–1599.

    Article  CAS  Google Scholar 

  41. Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular and Biological Evolution, 4, 406–425.

    CAS  Google Scholar 

  42. Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39, 783–791.

    Article  Google Scholar 

  43. Ghose, T. K. (1987). Measurement of cellulase activities. Pure and Applied Chemistry, 59, 257–268.

    CAS  Google Scholar 

  44. Riou, C., Salmon, J. M., Vallier, M. J., Gunata, Z., & Barre, P. (1998). Purification, characterization, and substrate specificity of a novel highly glucose-tolerant beta-glucosidase from Aspergillus oryzae. Applied and Environmental Microbiology, 64, 3607–3614.

    CAS  Google Scholar 

  45. Kim, Y. A., & Yoon, K. H. (2010). Characterization of a Paenibacillus woosongensis beta-Xylosidase/alpha-Arabinofuranosidase produced by recombinant Escherichia coli. Journal of Microbiology and Biotechnology, 20, 1711–1716.

    CAS  Google Scholar 

  46. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  47. Ornstein, L., & Davis, B. P. (1964). Disc electrophoresis. I. Background and theory. Annals of the New York Academy of Sciences, 121, 321–349.

    Article  CAS  Google Scholar 

  48. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  49. Yamamoto, E., Yamaguchi, S., & Nagamune, T. (2008). Effect of beta-cyclodextrin on the renaturation of enzymes after sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Analytical Biochemistry, 381, 273–275.

    Article  CAS  Google Scholar 

  50. Nazina, T. N., Tourova, T. P., Poltaraus, A. B., Novikova, E. V., Grigoryan, A. A., Ivanova, A. E., et al. (2001). Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius and G. thermodenitrificans. International Journal of Systematic and Evolutionary Microbiology, 51, 433–446.

    CAS  Google Scholar 

  51. Suzuki, Y., Kishigami, T., Inuoue, K., Mizoguchi, Y., Eto, N., Takagi, M., et al. (1983). Bacillus thermoglucosidasius sp. nov., a new species of obligately thermophilic bacilli. Systematic and Applied Microbiology, 4, 487–495.

    Article  CAS  Google Scholar 

  52. Tang, Y. J., Sapra, R., Joyner, D., Hazen, T. C., Myers, S., Reichmuth, D., et al. (2009). Analysis of metabolic pathways and fluxes in a newly discovered thermophilic and ethanol-tolerant Geobacillus strain. Biotechnology and Bioengineering, 102, 1377–1386.

    Article  CAS  Google Scholar 

  53. Deflaun, M. F., Fredrickson, J. K., Dong, H., Pfiffner, S. M., Onstott, T. C., Balkwill, D. L., et al. (2007). Isolation and characterization of a Geobacillus thermoleovorans strain from an ultra-deep South African gold mine. Systematic and Applied Microbiology, 30, 152–164.

    Article  CAS  Google Scholar 

  54. Afzal, A., Bokhari, S., Ahmad, W., Rashid, M., Rajoka, M., & Siddiqui, K. (2000). Two simple and rapid methods for the detection of polymer-degrading enzymes on high-resolution, alkaline, cold, in situ-native (HiRACIN)-PAGE and high-resolution, in situ-inhibited native (HiRISIN)-PAGE. Biotechnology Letters, 22, 957–960.

    Article  CAS  Google Scholar 

  55. Karlsson, E. N., Bartonek-Roxa, E., & Holst, O. (1998). Evidence for substrate binding of a recombinant thermostable xylanase originating from Rhodothermus marinus. FEMS Microbiology Letters, 168, 1–7.

    Article  CAS  Google Scholar 

  56. Sunna, A., & Antranikian, G. (1997). Xylanolytic enzymes from fungi and bacteria. Critical Reviews in Biotechnology, 17, 39–67.

    Article  CAS  Google Scholar 

  57. Zhu, H., Paradis, F. W., Krell, P. J., Phillips, J. P., & Forsberg, C. W. (1994). Enzymatic specificities and modes of action of the two catalytic domains of the XynC xylanase from Fibrobacter succinogenes S85. Journal of Bacteriology, 176, 3885–3894.

    CAS  Google Scholar 

  58. Sa-Pereira, P., Paveia, H., Costa-Ferreira, M., & Aires-Barros, M. (2003). A new look at xylanases: an overview of purification strategies. Molecular Biotechnology, 24, 257–281.

    Article  CAS  Google Scholar 

  59. Beg, Q. K., Kapoor, M., Mahajan, L., & Hoondal, G. S. (2001). Microbial xylanases and their industrial applications: a review. Applied Microbiology and Biotechnology, 56, 326–338.

    Article  CAS  Google Scholar 

  60. Bhalla, A., Bansal, N., Kumar, S., Bischoff, K. M., & Sani, R. K. (2013). Improved lignocellulose conversion to biofuels with thermophilic bacteria and thermostable enzymes. Bioresource Technology, 128, 751–759.

    Article  CAS  Google Scholar 

  61. Morales, P., Sendra, J. M., & Perez-Gonzalez, J. A. (1995). Purification and characterization of an arabinofuranosidase from Bacillus polymyxa expressed in Bacillus subtilis. Applied Microbiology and Biotechnology, 44, 112–117.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Cynthia Anderson and Dr. Dave Bergmann at Black Hills State University for providing valuable help in obtaining and interpreting sequencing data. Additional thanks go toward Dr. Todd Menkhaus for lending equipment for this project. Part of this work was supported by the South Dakota NASA EPSCoR Research Infrastructure Development (RID) Grant No. NNX07AL04A and South Dakota Board of Regents (SDBOR/BHSU 2011-19005) as a subaward from Black Hills State University (BHSU/SDSMT BA1100002). Additional support was received from the South Dakota 2010 Center of Bioprocessing Research and Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sookie S. Bang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergdale, T.E., Hughes, S.R. & Bang, S.S. Thermostable Hemicellulases of a Bacterium, Geobacillus sp. DC3, Isolated from the Former Homestake Gold Mine in Lead, South Dakota. Appl Biochem Biotechnol 172, 3488–3501 (2014). https://doi.org/10.1007/s12010-014-0784-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0784-7

Keywords

Navigation