Skip to main content
Log in

A Highly Thermostable Alkaline Cellulase-Free Xylanase from Thermoalkalophilic Bacillus sp. JB 99 Suitable for Paper and Pulp Industry: Purification and Characterization

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A highly thermostable alkaline xylanase was purified to homogeneity from culture supernatant of Bacillus sp. JB 99 using DEAE-Sepharose and Sephadex G-100 gel filtration with 25.7-fold increase in activity and 43.5% recovery. The molecular weight of the purified xylanase was found to be 20 kDA by SDS-PAGE and zymogram analysis. The enzyme was optimally active at 70 °C, pH 8.0 and stable over pH range of 6.0–10.0.The relative activity at 9.0 and 10.0 were 90% and 85% of that of pH 8.0, respectively. The enzyme showed high thermal stability at 60 °C with 95% of its activity after 5 h. The K m and V max of enzyme for oat spelt xylan were 4.8 mg/ml and 218.6 µM min−1 mg−1, respectively. Analysis of N-terminal amino acid sequence revealed that the xylanase belongs to glycosyl hydrolase family 11 from thermoalkalophilic Bacillus sp. with basic pI. Substrate specificity showed a high activity on xylan-containing substrate and cellulase-free nature. The hydrolyzed product pattern of oat spelt xylan on thin-layer chromatography suggested xylanase as an endoxylanase. Due to these properties, xylanase from Bacillus sp. JB 99 was found to be highly compatible for paper and pulp industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Beg, Q. K., Kapoor, M., Mahajan, L., & Hoondal, G. S. (2001). Applied Microbiology and Biotechnology, 56, 326–338. doi:10.1007/s002530100704.

    Article  CAS  Google Scholar 

  2. Gessesse, A., & Mamo, G. (1999). Enzyme and Microbial Technology, 25, 68–72. doi:10.1016/S0141-0229(99)00006-X.

    Article  CAS  Google Scholar 

  3. Takahashi, H., Nakai, R., & Nakamura, S. (2000). Biosci Biotechnol Biochem, 64, 887–890.

    Article  CAS  Google Scholar 

  4. Johnvesly, B., & Naik, G. R. (2001). Process Biochemistry, 37, 139–144. doi:10.1016/S0032-9592(01)00191-1.

    Article  CAS  Google Scholar 

  5. Johnvesly, B., Virupakshi, S., Patil, G. N., Ramalingam, & Naik, G. R. (2002). J Microbiol Biotechnol, 12, 53–156.

    Google Scholar 

  6. Ratanakhanokchai, K., Kyu, K. L., & Tanticharoen, M. (1999). Appl Environ Microbiol, 65, 694–697.

    CAS  Google Scholar 

  7. Laemmli, U. K. (1970). Nature, 227, 680–686. doi:10.1038/227680a0.

    Article  CAS  Google Scholar 

  8. Maalej, I., Belhaj, I., Masmoudi, N. F., & Belghith, H. (2009). Applied Biochemistry and Biotechnology, 158, 200–212. doi:10.1007/s12010-008-8317-x.

    Article  CAS  Google Scholar 

  9. Monica, D., Castro, A., Castro, R. M., Andrade, C. M., & Pereira, N. (2004). Applied Biochemistry and Biotechnology, 115, 1–3. doi:10.1385/ABAB:115:1-3:1003.

    Google Scholar 

  10. Chang, P., Tsai, W.-S., Tsai, C.-L., & Tseng, M.-J. (2004). Biochem Biophys Res Comms, 319, 1017–1025. doi:10.1016/j.bbrc.2004.05.078.

    Article  CAS  Google Scholar 

  11. Sudan, R., & Bajaj, B. K. (2007). World J Microbiol Biotechnol, 23, 491–500. doi:10.1007/s11274-006-9251-0.

    Article  CAS  Google Scholar 

  12. Nakamura, S., Wakabayashi, K., & Horikoshi, K. (1993). Appl Environ Microbiol, 59, 2311–2316.

    CAS  Google Scholar 

  13. Sharma, A., Adhikari, S., & Satyanarayana, T. (2007). World Journal of Microbiology & Biotechnology, 23, 483–490. doi:10.1007/s11274-006-9250-1.

    Article  CAS  Google Scholar 

  14. Subramaniyan, S., & Prema, P. (2000). FEMS Microbiology Letters, 183, 1–7. doi:10.1111/j.1574-6968.2000.tb08925.x.

    Article  CAS  Google Scholar 

  15. Subramaniyan, S., & Prema, P. (2002). Critical Reviews in Biotechnology, 22, 33–64. doi:10.1080/07388550290789450.

    Article  CAS  Google Scholar 

  16. Collins, T., Gerday, C., & Feller, G. (2005). FEMS Microbiology, 29, 3–23. doi:10.1016/j.femsre.2004.06.005.

    Article  CAS  Google Scholar 

  17. Viikari, L., Kantelinen, A., Buchert, J., & Puls, J. (1994). Applied Microbiology and Biotechnology, 41, 124–129. doi:10.1007/BF00166093.

    Article  CAS  Google Scholar 

  18. Virupakshi, S., Girresh, Babu, Satish, G. R., & Naik, G. R. (2005). Process Biochemistry, 40, 431–435. doi:10.1016/j.procbio.2004.01.027.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Council of Scientific and Industrial Research, New Delhi (Scheme no. 37/1297/07 EMR-II) for the financial support and providing Mr. D. Shrinivas the Junior Research Fellowship. The authors would also like to thank the National Facility for Protein Sequencing (Indian Institute of Technology, Mumbai) in carrying out protein sequencing work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gajanan Ramchandra Naik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shrinivas, D., Savitha, G., Raviranjan, K. et al. A Highly Thermostable Alkaline Cellulase-Free Xylanase from Thermoalkalophilic Bacillus sp. JB 99 Suitable for Paper and Pulp Industry: Purification and Characterization. Appl Biochem Biotechnol 162, 2049–2057 (2010). https://doi.org/10.1007/s12010-010-8980-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-010-8980-6

Keywords

Navigation