Skip to main content

Advertisement

Log in

Impact of Pretreatment with Dilute Sulfuric Acid Under Moderate Temperature on Hydrolysis of Corn Stover with Two Enzyme Systems

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Pretreatment of corn stover with dilute sulfuric acid at moderate temperature was investigated, and glucan digestibility by Cellic CTec2 and Celluclast on the pretreated biomass was compared. Pretreatments were carried out from 60 to 180 min at the temperature from 105 to 135 °C, with acid concentrations ranging from 0.5 to 2 % (w/v). Significant portion of xylan was removed during pretreatment, and the glucan digestibility by CTec2 was significantly better than that by Celluclast in all cases. Analysis showed that glucan digestibility by both two enzymes correlated directly with the extent of xylan removal in pretreatment. Confidence interval was built to give a more precise range of glucan conversion and to test the significant difference among pretreatment conditions. Response surface model was built to obtain the optimal pretreatment condition to achieve high glucan conversion after enzymatic hydrolysis. Considering the cost and energy savings, the optimal pretreatment condition of 1.75 % acid for 160 min at 135 °C was determined, and glucan conversion can achieve the range from 72.86 to 76.69 % at 95 % confidence level after enzymatic hydrolysis, making total glucan recovery up to the range from 89.42 to 93.25 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sassner, P., Mårtensson, C. G., Galbe, M., & Zacchi, G. (2008). Bioresource Technology, 99, 137–145.

    Article  CAS  Google Scholar 

  2. Ragauskas, A. J., Williams, C. K., Davison, B. H., Britovsek, G., Cairney, J., et al. (2006). Science, 311, 484–489.

    Article  CAS  Google Scholar 

  3. Hsu, T. C., Guo, G. L., Chen, W. H., & Hwang, W. S. (2010). Bioresource Technology, 101, 4907–4913.

    Article  CAS  Google Scholar 

  4. Chandra, R., Bura, R., Mabee, W., Berlin, A., Pan, X., & Saddler, J. (2007). Biofuels, 108, 67–93.

    Article  CAS  Google Scholar 

  5. Kabel, M. A., Bos, G., Zeevalking, J., Voragen, A. G. J., & Schols, H. A. (2007). Bioresource Technology, 98, 2034–2042.

    Article  CAS  Google Scholar 

  6. Zhu, Y., Lee, Y. Y., & Elander, R. T. (2005). Applied Biochemistry and Biotechnology, 124, 1045–1054.

    Article  Google Scholar 

  7. Hendriks, A., & Zeeman, G. (2009). Bioresource Technology, 100, 10–18.

    Article  CAS  Google Scholar 

  8. Sun, Y., & Cheng, J. (2002). Bioresource Technology, 83, 1–11.

    Article  CAS  Google Scholar 

  9. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y., Holtzapple, M., et al. (2005). Bioresource Technology, 96, 673–686.

    Article  CAS  Google Scholar 

  10. Ezeji, T., Qureshi, N., & Blaschek, H. P. (2007). Biotechnology and Bioengineering, 97, 1460–1469.

    Article  CAS  Google Scholar 

  11. Mussatto, S. I., & Roberto, I. C. (2004). Bioresource Technology, 93, 1–10.

    Article  CAS  Google Scholar 

  12. Kim, H.-Y., Lee, J.-W., Jeffries, T. W., & Choi, I.-G. (2011). Bioresource Technology, 102, 1440–1446.

    Article  CAS  Google Scholar 

  13. Silverstein, R. A., Chen, Y., Sharma-Shivappa, R. R., Boyette, M. D., & Osborne, J. (2007). Bioresource Technology, 98, 3000–3011.

    Article  CAS  Google Scholar 

  14. Wyman, C. E., Dale, B. E., Elander, R. T., Holtzapple, M., Ladisch, M. R., & Lee, Y. (2005). Bioresource Technology, 96, 2026–2032.

    Article  CAS  Google Scholar 

  15. Um, B. H., Karim, M. N., & Henk, L. L. (2003). Applied Biochemistry and Biotechnology, 105, 115–125.

    Article  Google Scholar 

  16. Xu, J., Zhang, X., & Cheng, J. J. (2012). Bioresource Technology, 111, 255–260.

    Article  CAS  Google Scholar 

  17. Cannella, D., Hsieh, C., Felby, C., & Jørgensen, H. (2012). Biotechnology for Biofuels, 5, 26–35.

    Article  CAS  Google Scholar 

  18. Keshwani, D. R., & Cheng, J. J. (2010). Biotechnology Progress, 26, 644–652.

    Article  CAS  Google Scholar 

  19. Adney, B., and Baker, J. (1996). http://www.nrel.gov/biomass/pdfs/42628.pdf. Accessed 14 Oct 2012.

  20. Sluiter, A., Hames, B., Hyman, D., Payne, C., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., and Wolfe, J. (2008). http://www.nrel.gov/docs/gen/fy08/42621.pdf. Accessed 20 Sep 2012.

  21. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., and Crocker, D. (2011). http://www.nrel.gov/biomass/pdfs/42618.pdf. Accessed 20 Sep 2012.

  22. Weiss, N. D., Farmer, J. D., & Schell, D. J. (2010). Bioresource Technology, 101, 674–678.

    Article  CAS  Google Scholar 

  23. Ishizawa, C. I., Davis, M. F., Schell, D. F., & Johnson, D. K. (2007). Journal of Agricultural and Food Chemistry, 55, 2575–2581.

    Article  CAS  Google Scholar 

  24. Tai, C., Li, S., Xu, Q., Ying, H., Huang, H., & Ouyang, P. (2010). Letters in Applied Microbiology, 51, 278–284.

    Article  CAS  Google Scholar 

  25. Palmqvist, E., & Hahn-Hägerdal, B. (2000). Bioresource Technology, 74, 17–24.

    Article  CAS  Google Scholar 

  26. Lloyd, T. A., & Wyman, C. E. (2005). Bioresource Technology, 96, 1967–1977.

    Article  CAS  Google Scholar 

  27. Schell, D., Farmer, J., Newman, M., & McMillan, J. (2003). Applied Biochemistry and Biotechnology, 105, 69–85.

    Article  Google Scholar 

  28. Redding, A. P., Wang, Z. Y., Keshwani, D. R., & Cheng, J. J. (2011). Bioresource Technology, 102, 1415–1424.

    Article  CAS  Google Scholar 

  29. Kim, T. H., Kim, J. S., Sunwoo, C., & Lee, Y. (2003). Bioresource Technology, 90, 39–47.

    Article  CAS  Google Scholar 

  30. Chang, V. S., & Holtzapple, M. T. (2000). Applied Biochemistry and Biotechnology, 84, 5–37.

    Article  Google Scholar 

Download references

Acknowledgments

This work was carried out with funding from a strategic research grant from the Institute of Agriculture and Natural Resources at the University of Nebraska. The authors would like to thank Novozymes North America, Inc., for the generous offer of CTec2 and Mr. Yixiang Zhang for his assistance with statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Keshwani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tai, C., Keshwani, D. Impact of Pretreatment with Dilute Sulfuric Acid Under Moderate Temperature on Hydrolysis of Corn Stover with Two Enzyme Systems. Appl Biochem Biotechnol 172, 2628–2639 (2014). https://doi.org/10.1007/s12010-013-0721-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0721-1

Keywords

Navigation