Skip to main content
Log in

Preparation, Characterization, and In Vitro Biological Evaluation of PLGA/Nano-Fluorohydroxyapatite (FHA) Microsphere-Sintered Scaffolds for Biomedical Applications

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this research, the novel three-dimensional (3D) porous scaffolds made of poly(lactic-co-glycolic acid) (PLGA)/nano-fluorohydroxyapatite (FHA) composite microspheres was prepared and characterize for potential bone repair applications. We employed a microsphere sintering method to produce 3D PLGA/nano-FHA scaffolds composite microspheres. The mechanical properties, pore size, and porosity of the composite scaffolds were controlled by varying parameters, such as sintering temperature, sintering time, and PLGA/nano-FHA ratio. The experimental results showed that the PLGA/nano-FHA (4:1) scaffold sintered at 90 °C for 2 h demonstrated the highest mechanical properties and an appropriate pore structure for bone tissue engineering applications. Furthermore, MTT assay and alkaline phosphatase activity (ALP activity) results ascertained that a general trend of increasing in cell viability was seen for PLGA/nano-FHA (4:1) scaffold sintered at 90 °C for 2 h by time with compared to control group. Eventually, obtained experimental results demonstrated PLGA/nano-FHA microsphere-sintered scaffold deserve attention utilizing for bone tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Langer, P., & Vacanti, J. P. (1993). Science, 260, 920.

    Article  CAS  Google Scholar 

  2. Nerem, R. M., & Sambanis, A. (1995). Tissue Engineering, 1, 3.

    Article  CAS  Google Scholar 

  3. Boyan, B. D., Lohmann, C. H., Romero, J., & Schwartz, Z. (1999). Clinics in Plastic Surgery, 26, 629.

    CAS  Google Scholar 

  4. Persidis, A. (1999). Nature Biotechnology, 17, 508.

    Article  CAS  Google Scholar 

  5. Chapekar, M. S. (2000). Journal of Biomedical Materials Research, 53, 617.

    Article  CAS  Google Scholar 

  6. Hudson, T. W., Evans, R. G., & Schmidt, C. E. (2000). The Orthopedic Clinics of North America, 31, 485.

    Article  CAS  Google Scholar 

  7. Sweigart, M. A., & Athanasiou, K. A. (2001). Tissue Engineering, 7, 111.

    Article  CAS  Google Scholar 

  8. Chen, G., Ushida, T., & Tateishi, T. (2002). Macromolecular Bioscience, 2, 67.

    Article  CAS  Google Scholar 

  9. Williams, D. (2004). Materials Today, 7, 24.

    Article  CAS  Google Scholar 

  10. Shin, H., Jo, S., & Mikos, A. G. (2004). Biomaterials, 24, 4353.

    Article  CAS  Google Scholar 

  11. Aboudzadeh, N., Imani, M., Shokrgozar, M. A., Khavandi, A., Javadpour, J., Shafieyan, Y., & Farokhi, M. (2010). Journal of Biomedical Materials Research, 94A, 137.

    Article  CAS  Google Scholar 

  12. Russias, J., Saiz, E., Nalla, R. K., Gryn, K., Ritchie, R. O., & Tomsia, A. P. (2006). Material Science and Engineering: Biomimetic and Material Sensory Systems, 26, 1289.

    Article  CAS  Google Scholar 

  13. Kasuga, T., Maeda, H., Kato, K., Nogami, M., Hata, K., & Ueda, M. (2003). Biomaterials, 24, 3247.

    Article  CAS  Google Scholar 

  14. Jain, R. A. (2000). Biomaterials, 21, 2475.

    Article  CAS  Google Scholar 

  15. Karp, J. M., Shoichet, M. S., & Davies, J. E. (2003). Journal of Biomedical Materials Research, 64A, 388.

    Article  CAS  Google Scholar 

  16. Shi, X., Wang, Y., Ren, L., Gong, Y., & Wang, D. A. (2009). Pharmaceutical Research, 26, 422.

    Article  CAS  Google Scholar 

  17. Ehrenfried, L. M., Patel, M. H., & Cameron, R. E. (2008). Journal of Materials Science: Materials in Medicine, 19, 459.

    CAS  Google Scholar 

  18. Boccaccini, A. R., Blaker, J. J., Maquet, V., Chung, W., Jerome, R., & Nazhat, S. N. (2006). Journal of Materials Science, 41, 3999.

    Article  CAS  Google Scholar 

  19. Eslami, H., Solati-Hashjin, M., & Tahriri, M. (2009). Materials Science and Engineering: C, 29, 1387.

    Article  CAS  Google Scholar 

  20. Jha, L. J., Best, S. M., Knowles, J. C., Rehman, I., Santos, J. D., & Bonfeild, W. (1997). Journal of Materials Science: Materials in Medicine, 8, 185.

    CAS  Google Scholar 

  21. Sogo, Y., Ito, A., Yokoyama, D., Yamazaki, A., & Legeros, R. Z. (2007). Journal of Materials Science: Materials in Medicine, 18, 1001.

    CAS  Google Scholar 

  22. Qu, W., Zhong, D., Wu, P., Wang, J., Han, B., & Bone, J. (2008). Mineral and Metabolism, 26, 328.

    Article  CAS  Google Scholar 

  23. Caverzasio, J., Palmer, G., & Bonjour, J. P. (1998). Bone, 22, 585.

    Article  CAS  Google Scholar 

  24. Lau, K. H. W., & Baylink, D. J. (2003). Journal of Bone and Mineral Research, 18, 1897.

    Article  CAS  Google Scholar 

  25. Riggs, B. L., Ofallon, W. M., & Lane, A. (1994). Journal of Bone and Mineral Research, 9, 265.

    Article  CAS  Google Scholar 

  26. Haguenauer, D., Welch, V., Shea, B., Tugwell, P., Adachi, J. D., & Wells, G. (2000). Osteoporosis International, 9, 727.

    Article  Google Scholar 

  27. Guanabens, N., Farrerons, J., Erez-Edo, P. L., Monegal, A., Renau, A., Carbonell, J., Roca, M., Torra, M., & Pavesi, M. (2000). Bone, 27, 123.

    Article  CAS  Google Scholar 

  28. Wang, N., Shenwu, X., Li, C., & Feng, M. F. (2000). Journal of Biomaterials Science Polymer Edition, 11, 301.

    Article  CAS  Google Scholar 

  29. Kothapalli, C., Shaw, M., & Wei, M. (2005). Acta Biomaterialia, 1, 53.

    Article  Google Scholar 

  30. Komath, M., & Varma, H. K. (2003). Bulletin of Materials Science, 26, 415.

    Article  CAS  Google Scholar 

  31. Eslami, H., Solati-Hashjin, M., & Tahriri, M. (2008). Journal of the Ceramic Process Research, 9, 224.

    Google Scholar 

  32. Lv, Q., Nair, L., & Laurencin, C. T. (2009). Journal of Biomedical Materials Research, 91A, 679.

    Article  CAS  Google Scholar 

  33. Jiang, T., Abdel-Fattah, W. I., & Laurencin, C. T. (2006). Biomaterials, 27, 4894.

    Article  CAS  Google Scholar 

  34. Borden, M., El-Amin, S. F., Attawia, M., & Laurencin, C. T. (2003). Biomaterials, 24, 597.

    Article  CAS  Google Scholar 

  35. Borden, M., Attawia, M., Khan, Y., & Laurencin, C. T. (2002). Biomaterials, 23, 551.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fathollah Moztarzadeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tahriri, M., Moztarzadeh, F. Preparation, Characterization, and In Vitro Biological Evaluation of PLGA/Nano-Fluorohydroxyapatite (FHA) Microsphere-Sintered Scaffolds for Biomedical Applications. Appl Biochem Biotechnol 172, 2465–2479 (2014). https://doi.org/10.1007/s12010-013-0696-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0696-y

Keywords

Navigation