Skip to main content
Log in

Evidence that Pulsed Electric Field Treatment Enhances the Cell Wall Porosity of Yeast Cells

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The application of rectangular electric pulses, with 0.1–2 ms duration and field intensity of 2.5–4.5 kV/cm, to yeast suspension mediates liberation of cytoplasmic proteins without cell lysis. The aim of this study was to evaluate the effect of pulsed electric field with similar parameters on cell wall porosity of different yeast species. We found that electrically treated cells become more susceptible to lyticase digestion. In dependence on the strain and the electrical conditions, cell lysis was obtained at 2–8 times lower enzyme concentration in comparison with control untreated cells. The increase of the maximal lysis rate was between two and nine times. Furthermore, when applied at low concentration (1 U/ml), the lyticase enhanced the rate of protein liberation from electropermeabilized cells without provoking cell lysis. Significant differences in the cell surface of control and electrically treated cells were revealed by scanning electron microscopy. Data presented in this study allow us to conclude that electric field pulses provoke not only plasma membrane permeabilization, but also changes in the cell wall structure, leading to increased wall porosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Neumann, E., Sprafke, A., Boldt, E., & Wolf, H. (1991). In D. Chang, B. M. Chassy, J. A. Saunders, & A. E. Sowers (Eds.), Guide to Electroporation and Electrofusion (pp. 77–90). San Diego: Academic.

    Google Scholar 

  2. Knorr, D. (1999). Current Opinion in Biotechnology, 10, 485–491.

    Article  CAS  Google Scholar 

  3. Barbosa-Canovas, G. V., & Altunakar, B. (2006). In G. V. Barbosa-Canovas (Ed.), Pulsed electric field technology for the food industry: Fundamentals and application (pp. 3–26). New York: Springer.

    Chapter  Google Scholar 

  4. Vorobiev, E., & Lebovka, N. (2011). In N. Lebovka, E. Vorobiev, & F. Chemat (Eds.), Enhancing Extraction Processes in the Food Industry (pp. 25–84). Boca Raton: CRC Press.

    Chapter  Google Scholar 

  5. Liu, D., Lebovka, N. I., & Vorobiev, E. (2013). Food and Bioprocess Technology, 6, 576–584.

    Article  CAS  Google Scholar 

  6. Ganeva, V., Galutzov, B., & Teissie, J. (2002). Biotechnology Letters, 24, 1853–1856.

    Article  CAS  Google Scholar 

  7. Ganeva, V., Galutzov, B., & Teissie, J. (2003). Analytical Biochemistry, 315, 77–84.

    Article  CAS  Google Scholar 

  8. Ganeva, V., Galutzov, B., & Teissie, J. (2004). Biotechnology Letters, 26, 933–937.

    Article  CAS  Google Scholar 

  9. Oshima, T., & Sato, M. (2004). Advances in Biochemical Engineering/Biotechnology, 90, 113–133.

    Article  Google Scholar 

  10. Gonzalez, M., de Groot, P.W.J., Klis, F.M., & Lipke, P.N. (2009). In: Microbial Glycobiology: Structures, Relevance, and Applications (A. Moran, P. Brennan, O. Holst, & F.von Itzstein, eds), Academic press, pp. 169–183.

  11. Zlotnik, H., Fernandez, M. P., Bowers, B., & Cabib, E. (1984). Journal of Bacteriology, 159, 1018–1026.

    CAS  Google Scholar 

  12. Ganeva, V., Galutzov, B., & Teissie, J. (1995). Biochimica et Biophysica Acta, 1240, 229–236.

    Article  Google Scholar 

  13. Pringle, J. R., & Mor, J.-R. (1975). Methods in Cell Biology, 11, 131–168.

    Article  CAS  Google Scholar 

  14. Ovalle, R., Seung, T. L., Holder, B., & Chong, J. K. (1998). Yeast, 14, 1159–1166.

    Article  CAS  Google Scholar 

  15. De Nobel, H., Ruiz, C., Martin, H., Morris, W., Brul, S., Molina, M., & Klis, F. M. (2000). Microbiology, 146, 2121–2132.

    Google Scholar 

  16. Simões, T., Teixeira, M. C., Fernandes, A. R., & Sá-Correia, I. (2003). Applied and Environmental Microbiology, 69, 4019–4028.

    Article  Google Scholar 

  17. Scott, J. T., & Schekman, R. (1980). Journal of Bacteriology, 142, 414–423.

    CAS  Google Scholar 

  18. Hunter, J. B., & Asenjo, J. A. (1986)). In J. A. Asenjo & J. Hong (Eds.), Separation, Recovery and Purification in Biotechnology; Recent Advances in Mathematical Modeling (314, pp. 9–31). Washington: ACS books.

    Chapter  Google Scholar 

  19. Salazar, O., & Asenjo, J. A. (2007). Biotechnology Letters, 29, 985–994.

    Article  CAS  Google Scholar 

  20. Asenjo, J. A., Ventom, A. M., Huang, R.-B., & Andrews, B. A. (1993). Nature Biotechnology, 11, 214–217.

    Article  CAS  Google Scholar 

  21. Cappellaro, C., Baldermann, C., Reinhard, R., & Tanner, W. (1994). EMBO Journal, 13, 4737–4744.

    CAS  Google Scholar 

  22. Klis, F. M., Boorsma, A., & De Groot, P. W. J. (2006). Yeast, 23, 185–202.

    Article  CAS  Google Scholar 

  23. Sheng, J., Vannela, R., & Rittmann, B. E. (2011). Environmental Science and Technology, 45, 3795–3802.

    Article  CAS  Google Scholar 

  24. Harrison, S. L., Barbosa-Canovas, G. V., & Swanson, B. G. (1997). Lebensmittel Wissenschaft und Technologie, 30, 236–240.

    CAS  Google Scholar 

  25. Jing, L., Xiaojun, L., Kui, Z., & Yan, Z. (2011). Transactions of Chinese Society of Agriculture Engineering, 4, 355–360.

    Google Scholar 

  26. Loginova, K., Lebovka, N., & Vorobiev, E. (2011). Journal of Food Engineering, 106, 127–133.

    Article  CAS  Google Scholar 

  27. Puértolas, E., Cregenzán, O., Luengo, E., Álvarez, I., & Raso, J. (2013). Food Chemistry, 135, 1330–1336.

    Article  Google Scholar 

  28. Kempkes, M.A., Roth, I., & Gaudreau, MPJ. (2011). United States Patent US 2011/0107655 A1.

  29. Hayamizu, M., Tenma, T., & Mizuno, A. (1989). Proceedings Institute of Electrostatics Japan, 13, 322–331.

    Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the European Union Seventh Framework Program (FP7/2008-2011) under grant agreement no. 222220.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina Ganeva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganeva, V., Galutzov, B. & Teissie, J. Evidence that Pulsed Electric Field Treatment Enhances the Cell Wall Porosity of Yeast Cells. Appl Biochem Biotechnol 172, 1540–1552 (2014). https://doi.org/10.1007/s12010-013-0628-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0628-x

Keywords

Navigation