Skip to main content
Log in

Transesterification of Waste Cooking Oil by an Organic Solvent-Tolerant Alkaline Lipase from Streptomyces sp. CS273

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The aim of this present study was to produce a microbial enzyme that can potentially be utilized for the enzymatic transesterification of waste cooking oil. To that end, an extracellular lipase was isolated and purified from the culture broth of Streptomyces sp. CS273. The molecular mass of purified lipase was estimated to be 36.55 kDa by SDS PAGE. The optimum lipolytic activity was obtained at alkaline pH 8.0 to 8.5 and temperature 40 °C, while the enzyme was stable in the pH range 7.0 ∼ 9.0 and at temperature ≤40 °C. The lipase showed highest hydrolytic activity towards p-nitrophenyl myristate (C14). The lipase activity was enhanced by several salts and detergents including NaCl, MnSo4, and deoxy cholic acid, while phenylmethylsulfonyl fluoride at concentration 10 mM inhibited the activity. The lipase showed tolerance towards different organic solvents including ethanol and methanol which are commonly used in transesterification reactions to displace alcohol from triglycerides (ester) contained in renewable resources to yield fatty acid alkyl esters known as biodiesel. Applicability of the lipase in transesterification of waste cooking oil was confirmed by gas chromatography mass spectrometry analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhang, Y., Dube, M., McLean, D., & Kates, M. (2003). Bioresource Technology, 89(1), 1–16.

    Article  CAS  Google Scholar 

  2. Szczęsna, A. M., Kubiak, A., Antczak, T., & Bielecki, S. (2009). Renewable Energy, 34(5), 1185–1194.

    Article  Google Scholar 

  3. Wang, Y., Liu, P., Ou, S., & Zhang, Z. (2007). Energy Conversion and Management, 48(1), 184–188.

    Article  Google Scholar 

  4. Ghaly, A. E., Dave, D., Brooks, M., & Budge, S. (2010). American Journal of Biochemistry and Biotechnology, 6(2), 54–76.

    Article  CAS  Google Scholar 

  5. Gang, W., Guang, C., & Ming, W. (2011). African Journal of Biotechnology, 10(61), 13174–13179.

    Google Scholar 

  6. Whangsuk, W., Sungkeeree, P., Thiengmag, S., Kerdwong, J., Sallabhan, R., Mongkolsuk, S., et al. (2013). Molecular Biotechnology, 53(1), 55–62.

    Article  CAS  Google Scholar 

  7. Ji, Q., Xiao, S., He, B., & Liu, X. (2010). Journal of Molecular Catalysis B: Enzymatic, 66(3), 264–269.

    Article  CAS  Google Scholar 

  8. Mander, P., Cho, S. S., Simkhada, J. R., Choi, Y. H., Ha, J. W., & Yoo, J. C. (2012). Biotechnology and Bioprocess Engineering, 17(1), 67–75.

    Article  CAS  Google Scholar 

  9. Mander, P., Cho, S. S., Simkhada, J. R., Choi, Y. H., Park, D. J., & Yoo, J. C. (2012). Process Biochemistry, 47(4), 635–642.

    Article  CAS  Google Scholar 

  10. Bradford, M. M. (1976). Analytical Biochemistry, 72(1), 248–254.

    Article  CAS  Google Scholar 

  11. Winkler, U. K., & Stuckmann, M. (1979). Journal of Bacteriology, 138(8), 663–670.

    CAS  Google Scholar 

  12. Laemmli, U. K. (1970). Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  13. Desousa, J. S., Cavalcanti-Oliveira, E., Aranda, D. A. G., & Freire, D. M. G. (2010). Journal of Molecular Catalysis B: Enzymatic, 65(1), 133–137.

    Article  Google Scholar 

  14. Yang, K. S., Sohn, J. H., & Kim, H. K. (2009). Journal of Bioscience and Bioengineering, 107(6), 599–604.

    Article  CAS  Google Scholar 

  15. Bae, M. S., Ji, Y. L., Kim, Y. P., Oak, M. H., Shin, J. S., Lee, K. Y., et al. (2012). Asian Journal of Atmospheric Environment, 6, 53–66.

    Article  CAS  Google Scholar 

  16. Rivera-Pérez, C., Del, T. M., & García-Carreño, F. (2011). Comparative Biochemistry and Physiology. Part B, Biochemistry and Molecular Biology, 158(1), 99–105.

    Article  Google Scholar 

  17. Zhang, Y., Meng, K., Wang, Y., Luo, H., Yang, P., Shi, P., et al. (2008). Enzyme and Microbial Technology, 42(4), 346–352.

    Article  CAS  Google Scholar 

  18. Abramić, M., Leščić, I., Korica, T., Vitale, L., Saenger, W., & Pigac, J. (1999). Enzyme and Microbial Technology, 25(6), 522–529.

    Article  Google Scholar 

  19. Peng, R., Lin, J., & Wei, D. (2010). Applied Biochemistry and Biotechnology, 162(3), 733–743.

    Article  CAS  Google Scholar 

  20. Wang, S. L., Lin, Y. T., Liang, T. W., Chio, S. H., Ming, L. J., & Wu, P. C. (2009). Journal of Industrial Microbiology and Biotechnology, 36(1), 65–73.

    Article  Google Scholar 

  21. Pleiss, J., Fischer, M., & Schmid, R. D. (1998). Chemistry and Physics of Lipids, 93(1), 67–80.

    Article  CAS  Google Scholar 

  22. Li, S., Pang, H., Lin, K., Xu, J., Zhao, J., & Fan, L. (2011). Journal of Molecular Catalysis B: Enzymatic, 71(1), 171–176.

    Article  CAS  Google Scholar 

  23. Yoo, H. Y., Simkhada, J. R., Cho, S. S., Park, D. H., Kim, S. W., Seong, C. N., et al. (2011). Bioresource Technology, 102(10), 6104–6111.

    Article  CAS  Google Scholar 

  24. Torres, S., & Castro, G. R. (2004). Food Technology and Biotechnology, 42(4), 271–277.

    CAS  Google Scholar 

  25. Doukyu, N., & Ogino, H. (2010). Biochemical Engineering Journal, 48(3), 270–282.

    Article  CAS  Google Scholar 

  26. Cho, S. S., Simkhada, J. R., Hong, J. H., Sohng, J. K., Lee, O. H., & Yoo, J. C. (2012). Bioprocess and Biosystems Engineering, 35(1), 227–234.

    Article  CAS  Google Scholar 

  27. Côté, A., & Shareck, F. (2008). Enzyme and Microbial Technology, 42(5), 381–388.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MEST) (2010-0029178) and by research fund from Chosun University, 2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Cheol Yoo.

Additional information

Poonam Mander and Hah-Young Yoo contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mander, P., Yoo, HY., Kim, S.W. et al. Transesterification of Waste Cooking Oil by an Organic Solvent-Tolerant Alkaline Lipase from Streptomyces sp. CS273. Appl Biochem Biotechnol 172, 1377–1389 (2014). https://doi.org/10.1007/s12010-013-0610-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0610-7

Keywords

Navigation