Skip to main content
Log in

Purification and characterization of extracellular lipases from Pseudomonas monteilii TKU009 by the use of soybeans as the substrate

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

A lipase-producing bacterium was isolated and identified as Pseudomonas monteilii TKU009. A lipase (F2) and lipase-like materials (F1) were purified from the culture supernatant of P. monteilii TKU009 with soybean powder as the sole carbon/nitrogen source. The molecular mass of F1 and F2 was estimated to be 44 kDa by SDS-PAGE and gel filtration. The optimum pH, optimum temperature, and pH and thermal stabilities of F2 were 7, 40°C, 8–11, and 50°C; and of F1 were 6, 40°C, 6–7, and 50°C, respectively. F2 was completely inhibited by EDTA and slightly by Mg2+, Fe2+, Mn2+, and SDS. F1 was completely inhibited by EDTA and Fe2+ and strongly by Zn2+, Mn2+, Ca2+, Mg2+, and SDS. The activities of both the enzymes were enhanced by the addition of non-ionic surfactants Triton X–100 and Tween 40, especially for F1. F2 preferably acted on substrates with a long chain (C10–C18) of fatty acids, while F1 showed a broad spectrum on those with chain length of C4–C18. The marked activity of F2 in organic solvents makes it an ideal choice for application in a water-restricted medium including organic synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. D’Annibale A, Sermanni GG, Federici F, Petruccioli M (2006) Olive-mill wastewaters: a promising substrate for microbial lipase production. Bioresour Technol 97:1823–1833

    Google Scholar 

  2. Jaeger KE, Ransac S, Dijkstra BW, Colson C, Mv Heuvel, Misset O (1994) Bacterial lipases. FEMS Microbiol Rev 15:29–63. doi:10.1111/j.1574-6976.1994.tb00121.x

    Article  PubMed  CAS  Google Scholar 

  3. Jaeger KE, Reetz MT (1998) Microbial lipases form versatile tools for biotechnology. Trends Biotechnol 16:396–403. doi:10.1016/S0167-7799(98)01195-0

    Article  PubMed  CAS  Google Scholar 

  4. Hasan F, Shah AA, Hameed A (2006) Industrial applications of microbial lipases. Enzyme Microb Technol 39:235–251. doi:10.1016/j.enzmictec.2005.10.016

    Article  CAS  Google Scholar 

  5. Aloulou A, Rodriguez JA, Puccinelli D, Mouz N, Leclaire J, Leblond Y et al (2007) Purification and biochemical characterization of the LIP2 lipase from Yarrowia lipolytica. Biochim Biophys Acta 1771:228–237

    PubMed  CAS  Google Scholar 

  6. Noureddini H, Gao X, Philkana RS (2005) Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from soybean oil. Bioresour Technol 96:769–777. doi:10.1016/j.biortech.2004.05.029

    Article  PubMed  CAS  Google Scholar 

  7. Burkert JFM, Maugeri F, Rodrigues MI (2004) Optimization of extracellular lipase production by Geotrichum sp. using factorial design. Bioresour Technol 91:77–84. doi:10.1016/S0960-8524(03)00152-4

    Article  PubMed  CAS  Google Scholar 

  8. Bornscheuer UT, Kazlauskas RJ (2006) Hydrolases in organic synthesis—regio- and stereoselective biotransformations, 2nd edn. Wiley-VCH, Weinheim

    Google Scholar 

  9. Karadzic I, Masui A, Zivkovic LI, Fujiwara N (2006) Purification and characterization of an alkaline lipase from Pseudomonas aeruginosa isolated from putrid mineral cutting oil as component of metalworking fluid. J Biosci Bioeng 102:82–89. doi:10.1263/jbb.102.82

    Article  PubMed  CAS  Google Scholar 

  10. Singh S, Banerjee UC (2007) Purification and characterization of trans-3-(4-methoxyphenyl) glycidic acid methyl ester hydrolyzing lipase from Pseudomonas aeruginosa. Process Biochem 42:1063–1068. doi:10.1016/j.procbio.2007.04.006

    Article  CAS  Google Scholar 

  11. Kim KR, Kwon DY, Yoon SH, Kim WY, Kim KH (2005) Purification, refolding, and characterization of recombinant Pseudomonas fluorescens lipase. Protein Expr Purif 39:124–129. doi:10.1016/j.pep.2004.09.014

    Article  PubMed  CAS  Google Scholar 

  12. Jinwal UK, Roy U, Chowdhury A, Bhaduri A, Roy PK (2003) Purification and characterization of an alkaline lipase from a newly isolated Pseudomonas mendoncina PK-12Cs and chemoselective hydolysis of fatty acid ester. Bioorg Med Chem 11:1041–1046. doi:10.1016/S0968-0896(02)00516-3

    Article  PubMed  CAS  Google Scholar 

  13. Reetz MT, Jaeger KE (1998) Overexpression, immobilization and biotechnological application of Pseudomonas lipases. Chem Phys Lipids 93:3–14. doi:10.1016/S0009-3084(98)00033-4

    Article  PubMed  CAS  Google Scholar 

  14. Krieg NR, Holt JG (1984) Bergey’s manual of systematic bacteriology, vol 1. Williams and Wilkins, Baltimore, MD

    Google Scholar 

  15. Wang SL, Hsu WT, Liang TW, Yen YH, Wang CL (2008) Purification and characterization of three keratinolytic metalloproteases produced by Chryseobacterium indologenes TKU014 in a shrimp shell powder medium. Bioresour Technol 99(13):5679–5686

    Article  PubMed  CAS  Google Scholar 

  16. Kumar S, Kikon K, Upadhyay A, Kanwar SS, Gupta R (2005) Production, purifcation, and characterization of lipase from thermophilic and alkaliphilic Bacillus coagulans BTS-3. Protein Expr Purif 41:38–44. doi:10.1016/j.pep.2004.12.010

    Article  PubMed  CAS  Google Scholar 

  17. Castro-Ochoa LD, Rodríguez-Gómez C, Valerio-Alfaro G, Oliart Ros R (2005) Screening, purification and characterization of the thermoalkalophilic lipase produced by Bacillus thermoleovorans CCR11. Enzyme Microb Technol 37:648–654. doi:10.1016/j.enzmictec.2005.06.003

    Article  CAS  Google Scholar 

  18. Saxena RK, Sheoran A, Giri B, Davidson WS (2003) Purification strategies for microbial lipases. J Microbiol Methods 52:1–18. doi:10.1016/S0167-7012(02)00161-6

    Article  PubMed  CAS  Google Scholar 

  19. Tan T, Zhang M, Xu J, Zhang J (2004) Optimization of culture conditions and properties of lipase from Penicillium camembertii Thom PG-3. Process Biochem 39:1495–1502. doi:10.1016/S0032-9592(03)00296-6

    Article  CAS  Google Scholar 

  20. Rahman RNZRA, Baharum SN, Basri M, Salleh AB (2005) High-yield purification of an organic solvent-tolerant lipase from Pseudomonas sp. strain S5. Anal Biochem 341:267–274. doi:10.1016/j.ab.2005.03.006

    Article  PubMed  CAS  Google Scholar 

  21. Lee KW, Bae HA, Shin GS, Lee YH (2006) Purification and catalytic properties of novel enantioselective lipase from Acinetobacter sp. ES-1 for hydrolysis of (S)-ketoprofen ethyl ester. Enzyme Microb Technol 38:443–448. doi:10.1016/j.enzmictec.2005.06.017

    Article  CAS  Google Scholar 

  22. Chen S, Qian L, Shi B (2007) Purification and properties of enantioselective lipase from a newly isolated Bacillus cereus C71. Process Biochem 42:988–994. doi:10.1016/j.procbio.2007.03.010

    Article  CAS  Google Scholar 

  23. Lima VMG, Krieger N, Mitchell DA, Fontana JD (2004) Activity and stability of a crude lipase from Penicillium aurantiogriseum in aqueous media and organic solvents. Biochem Eng J 18:65–71. doi:10.1016/S1369-703X(03)00165-7

    Article  CAS  Google Scholar 

  24. Yu M, Qin S, Tan T (2007) Purification and characterization of the extracellular lipase Lip2 from Yarrowia lipolytica. Process Biochem 42:384–391. doi:10.1016/j.procbio.2006.09.019

    Article  CAS  Google Scholar 

  25. Sharma R, Soni SK, Vohra RM, Gupta LK, Gupta JK (2002) Purification and characterisation of a thermostable alkaline lipase from a new thermophilic Bacillus sp. RSJ-1. Process Biochem 37:1075–1084. doi:10.1016/S0032-9592(01)00316-8

    Article  CAS  Google Scholar 

  26. Sinchaikul S, Sookkheo B, Phutrakul S, Pan FM, Chen ST (2001) Optimization of a thermostable lipase from Bacillus stearothermophilus P1: overexpression, purification, and characterization. Protein Expr Purif 22:388–398. doi:10.1006/prep.2001.1456

    Article  PubMed  CAS  Google Scholar 

  27. Amada K, Kwon HJ, Haruki M (2001) Ca2+-induced folding of a family I.3 lipase with repetitive Ca2+ binding motifs at the C-terminus. FEBS Lett 509:17–21. doi:10.1016/S0014-5793(01)03108-8

    Article  PubMed  CAS  Google Scholar 

  28. Ogino H, Ishikawa H (2001) Enzymes which are stable in the presence of organic solvents. J Biosci Bioeng 91:109–116. doi:10.1263/jbb.91.109

    Article  PubMed  CAS  Google Scholar 

  29. Torres S, Castro G (2004) Non-aqueous biocatalysis in homogenous systems. Food Technol Biotechnol 42:271–277

    CAS  Google Scholar 

Download references

Acknowledgment

This work was supported in part by a grant from the National Science Council, Taiwan (NSC94-2313-B-212-003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to San-Lang Wang.

Additional information

Li-June Ming is a visiting Professor at the National Cheng Kung University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, SL., Lin, YT., Liang, TW. et al. Purification and characterization of extracellular lipases from Pseudomonas monteilii TKU009 by the use of soybeans as the substrate. J Ind Microbiol Biotechnol 36, 65–73 (2009). https://doi.org/10.1007/s10295-008-0473-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-008-0473-z

Keywords

Navigation