Skip to main content
Log in

Expression of NAD(H) Kinase and Glucose-6-Phosphate Dehydrogenase Improve NADPH Supply and l-isoleucine Biosynthesis in Corynebacterium glutamicum ssp. lactofermentum

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Corynebacterium glutamicum is the workhorse for the production of amino acids, including l-isoleucine (Ile). During Ile biosynthesis, NADPH is required as a crucial cofactor. In this study, four NADPH-supplying strategies based on NAD kinase, NADH kinase, glucose-6-phosphate dehydrogenase, and NAD kinase coupling with glucose-6-phosphate dehydrogenase were compared, and their influences on Ile biosynthesis were examined. PpnK is a NAD kinase of C. glutamicum ssp. lactofermentum JHI3-156 that predominantly phosphorylates NAD+ to produce NADP+. Pos5 is a NADH kinase of Saccharomyces cerevisiae that predominantly phosphorylates NADH to produce NADPH. Zwf is a glucose-6-phosphate dehydrogenase of JHI3-156. The ppnK, POS5, zwf, and zwf-ppnK genes were overexpressed in the Ile-producing strain JHI3-156. The expression of all four genes increased intracellular NADPH concentration and Ile production. The increase of NADPH concentration and Ile production in a POS5-expressing strain (229 and 75.6 %, respectively) was higher than that in a ppnK-expression strain. The expression of zwf also increased NADPH supply and Ile biosynthesis, but the constitutive expression of zwf was not as effective as the inducible expression of zwf. Coexpression of zwf and ppnK genes greatly enhanced NADPH supply and thus improved Ile production by up to 85.9 %, indicating that this strategy was the most effective one. These results are helpful for improving Ile biosynthesis and other biosynthetic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hermann, T. (2003). Industrial production of amino acids by coryneform bacteria. Journal of Biotechnology, 104, 155–172.

    Article  CAS  Google Scholar 

  2. Schneider, J., Niermann, K., & Wendisch, V. F. (2010). Production of the amino acids l-glutamate, l-lysine, l-ornithine and l-arginine from arabinose by recombinant Corynebacterium glutamicum. Journal of Biotechnology, 154, 191–198.

    Article  Google Scholar 

  3. Park, J. H., & Lee, S. Y. (2010). Metabolic pathways and fermentative production of l-aspartate family amino acids. Biotechnology Journal, 5, 560–577.

    Article  CAS  Google Scholar 

  4. Park, J. H., & Lee, S. Y. (2010). Fermentative production of branched chain amino acids: a focus on metabolic engineering. Applied Microbiology and Biotechnology, 85, 491–506.

    Article  CAS  Google Scholar 

  5. Lordelo, M. M., Gaspar, A. M., Le, B. L., & Freire, J. P. (2008). Isoleucine and valine supplementation of a low-protein corn-wheat-soybean meal-based diet for piglets: growth performance and nitrogen balance. Journal of Animal Science, 86, 2936–2941.

    Article  CAS  Google Scholar 

  6. Olde, D. S., Jalan, R., Deutz, N. E., Dejong, C. H., Redhead, D. N., Hynd, P., et al. (2007). Isoleucine infusion during "simulated" upper gastrointestinal bleeding improves liver and muscle protein synthesis in cirrhotic patients. Hepatology, 45, 560–568.

    Article  Google Scholar 

  7. Guillouet, S., Rodal, A. A., An, G. H., Gorret, N., Lessard, P. A., & Sinskey, A. J. (2001). Metabolic redirection of carbon flow toward isoleucine by expressing a catabolic threonine dehydratase in a threonine-overproducing Corynabacterium glutamicum. Applied Microbiology and Biotechnology, 57, 667–673.

    Article  CAS  Google Scholar 

  8. Yin, L. H., Hu, X. Q., Xu, D. Q., Ning, J. F., Chen, J., & Wang, X. Y. (2012). Co-expression of feedback-resistant threonine dehydratase and acetohydroxy acid synthase increase l-isoleucine production in Corynebacterium glutamicum. Metabolic Engineering, 14, 542–550.

    Article  CAS  Google Scholar 

  9. Xie, X. X., Xu, L. L., Shi, J. M., Xu, Q. Y., & Chen, N. (2012). Effect of transport proteins on l-isoleucine production with the l-isoleucine-producing strain Corynebacterium glutamicum YILW. Journal of Industrial Microbiology and Biotechnology, 39, 1549–1556.

    Article  CAS  Google Scholar 

  10. Moritz, B., Striegel, K., de Graaf, A. A., & Sahm, H. (2000). Kinetic properties of the glucose-6-phosphate and 6-phosphogluconate dehydrogenases from Corynebacterium glutamicum and their application for predicting pentose pathway flux in vivo. European Journal of Biochemistry, 267, 3442–3452.

    Article  CAS  Google Scholar 

  11. Becker, J., Klopprogge, C., Herold, A., Zelder, O., Bolten, C. J., & Wittmann, C. (2007). Metabolic flux engineering of l-lysine production in Corynebacterium glutamicum—over expression and modification of G6P dehydrogenase. Journal of Biotechnology, 132, 99–109.

    Article  CAS  Google Scholar 

  12. Georgi, T., Rittmann, D., & Wendisch, V. F. (2005). Lysine and glutamate production by Corynebacterium glutamicum on glucose, fructose and sucrose: roles of malic enzyme and fructose-1,6-bisphosphatase. Metabolic Engineering, 7, 291–301.

    Article  CAS  Google Scholar 

  13. Bartek, T., Blombach, B., Lang, S., Eikmanns, B. J., Wiechert, W., Oldiges, M., et al. (2011). Comparative 13C metabolic flux analysis of pyruvate dehydrogenase complex-deficient, l-valine-producing Corynebacterium glutamicum. Applied and Environmental Microbiology, 77, 6644–6652.

    Article  CAS  Google Scholar 

  14. Ying, W. (2008). NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences. Antioxidants & Redox Signaling, 10, 179–206.

    Article  CAS  Google Scholar 

  15. Garavaglia, S., Raffaelli, N., Finaurini, L., Magni, G., & Rizzi, M. (2004). A novel fold revealed by Mycobacterium tuberculosis NAD kinase, a key allosteric enzyme in NADP biosynthesis. Journal of Biological Chemistry, 279, 40980–40986.

    Article  CAS  Google Scholar 

  16. Shi, F., Li, Y. F., Li, Y., & Wang, X. Y. (2009). Molecular properties, functions and potential applications of NAD kinases. Acta Biochimica et Biophysica Sinica, 41, 351–361.

    Google Scholar 

  17. Kawai, S., & Murata, K. (2008). Structure and function of NAD kinase and NADP phosphatase: key enzymes that regulate the intracellular balance of NAD(H) and NADP(H). Bioscience, Biotechnology, and Biochemistry, 72, 919–930.

    Article  CAS  Google Scholar 

  18. Kawai, S., Mori, S., Mukai, T., Suzuki, S., Hashimoto, W., Tamada, T., & Murata, K. (2000). Inorganic polyphosphate/ATP-NAD kinase of Micrococcus flavus and Mycobacterium tuberculosis H37Rv. Biochemical and Biophysical Research Communications, 276, 57–63.

    Article  CAS  Google Scholar 

  19. Lindner, S. N., Niederholtmeyer, H., Schmitz, K., Schoberth, S. M., & Wendisch, V. F. (2010). Polyphosphate/ATP-dependent NAD kinase of Corynebacterium glutamicum: biochemical properties and impact of ppnK overexpression on lysine production. Applied Microbiology and Biotechnology, 87, 583–593.

    Article  CAS  Google Scholar 

  20. Ohashi, K., Kawai, S., & Murata, K. (2012). Identification and characterization of a human mitochondrial NAD kinase. Nature Communications, 3, 1248.

    Article  Google Scholar 

  21. Shi, F., Huan, X. J., Wang, X. Y., & Ning, J. F. (2012). Overexpression of NAD kinases improves the l-isoleucine biosynthesis in Corynebacterium glutamicum ssp. lactofermentum. Enzyme and Microbial Technology, 51, 73–80.

    Article  CAS  Google Scholar 

  22. Lee, H. C., Kim, J. S., Jang, W., & Kim, S. Y. (2009). Thymidine production by overexpressing NAD+ kinase in an Escherichia coli recombinant strain. Biotechnology Letters, 31, 1929–1936.

    Article  CAS  Google Scholar 

  23. Outten, C. E., & Culotta, V. C. (2003). A novel NADH kinase is the mitochondrial source of NADPH in Saccharomyces cerevisiae. EMBO Journal, 22, 2015–2024.

    Article  CAS  Google Scholar 

  24. Shi, F., Kawai, S., Mori, S., Kono, E., & Murata, K. (2005). Identification of ATP-NADH kinase isozymes and their contribution to supply of NADP(H) in Saccharomyces cerevisiae. FEBS Journal, 272, 3337–3349.

    Article  CAS  Google Scholar 

  25. Miyagi, H., Kawai, S., & Murata, K. (2009). Two sources of mitochondrial NADPH in the yeast Saccharomyces cerevisiae. Journal of Biological Chemistry, 284, 7553–7560.

    Article  CAS  Google Scholar 

  26. Shi, F., Li, Z. J., Sun, M. D., & Li, Y. F. (2011). The role of mitochondrial NADH kinase and NADPH supply in respiratory chain activity of Saccharomyces cerevisiae. Acta Biochimica et Biophysica Sinica, 43, 989–995.

    Article  CAS  Google Scholar 

  27. Strand, M. K., Stuart, G. R., Longley, M. J., Graziewicz, M. A., Dominick, O. C., & Copeland, W. C. (2003). POS5 gene of Saccharomyces cerevisiae encodes a mitochondrial NADH kinase required for stability of mitochondrial DNA. Eukaryotic Cell, 2, 809–820.

    Article  CAS  Google Scholar 

  28. Xu, D. Q., Tan, Y. Z., Huan, X. J., Hu, X. Q., & Wang, X. Y. (2010). Construction of a novel shuttle vector for use in Brevibacterium flavum, an industrial amino acid producer. Journal of Microbiological Methods, 80, 86–92.

    Article  CAS  Google Scholar 

  29. Xu, D. Q., Tan, Y. Z., Shi, F., & Wang, X. Y. (2010). An improved shuttle vector constructed for metabolic engineering research in Corynebacterium glutamicum. Plasmid, 64, 85–91.

    Article  CAS  Google Scholar 

  30. Blombach, B., Schreiner, M. E., Holatko, J., Bartek, T., Oldiges, M., & Eikmanns, B. J. (2007). l-valine production with pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum. Applied and Environment Microbiology, 73, 2079–2084.

    Article  CAS  Google Scholar 

  31. Lee, I. Y., Kim, M. K., Park, Y. H., & Lee, S. Y. (1996). Regulatory effects of cellular nicotinamide nucleotides and enzyme activities on poly(3-hydroxybutyrate) synthesis in recombinant Escherichia coli. Biotechnology and Bioengineering, 52, 707–712.

    Article  CAS  Google Scholar 

  32. Kennerknecht, N., Sahm, H., Yen, M. R., Pátek, M., Saier, M. H., Jr., & Eggeling, L. (2002). Export of l-isoleucine from Corynebacterium glutamicum: a two-gene-encoded member of a new translocator family. Journal of Bacteriology, 184, 3947–3956.

    Article  CAS  Google Scholar 

  33. Bartek, T., Blombach, B., Zonnchen, E., Makus, P., Lang, S., Eikmanns, B. J., et al. (2010). Importance of NADPH supply for improved l-valine formation in Corynebacterium glutamicum. Biotechnology Progress, 26, 361–371.

    CAS  Google Scholar 

  34. Lee, W. H., Kim, J. W., Park, E. H., Han, N. S., Kim, M. D., & Seo, J. H. (2013). Effects of NADH kinase on NADPH-dependent biotransformation processes in Escherichia coli. Applied Microbiology and Biotechnology, 97, 1561–1569.

    Article  CAS  Google Scholar 

  35. Shi, A., Zhu, X., Lu, J., Zhang, X., & Ma, Y. (2013). Activating transhydrogenase and NAD kinase in combination for improving isobutanol production. Metabolic Engineering, 16, 1–10.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the grants from the National Natural Science Foundation of China (no. 30870056).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Shi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, F., Li, K., Huan, X. et al. Expression of NAD(H) Kinase and Glucose-6-Phosphate Dehydrogenase Improve NADPH Supply and l-isoleucine Biosynthesis in Corynebacterium glutamicum ssp. lactofermentum . Appl Biochem Biotechnol 171, 504–521 (2013). https://doi.org/10.1007/s12010-013-0389-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0389-6

Keywords

Navigation