Skip to main content
Log in

Oil Crop Biomass Residue-Based Media for Enhanced Algal Lipid Production

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate the use of hydrolysates from acid hydrolysis of four different oil crop biomass residues (OCBR) as low cost culture media for algae growth. The one-factor-at-a-time method was used to design a series of experiments to optimize the acid hydrolysis conditions through examining the total nitrogen, total phosphorus, chemical oxygen demand, and ammonia nitrogen in the hydrolysates. The optimal conditions were found to be using 3 % sulfuric acid and hydrolyzing residues at 90 °C for 20 h. The hydrolysates (OCBR media) produced under the optimal conditions were used to cultivate the two algae strains, namely UM258 and UM268. The results from 5 days of cultivation showed that the OCBR media supported faster algae growth with maximal algal biomass yield of 2.7 and 3 g/L, respectively. Moreover, the total lipids for UM258 and UM268 were 54 and 35 %, respectively, after 5 days of cultivation, which suggested that the OCBR media allowed the algae strains to accumulate higher lipids probably due to high C/N ratio. Furthermore, over 3 % of omega-3 fatty acid (EPA) was produced for the two algae strains. In conclusion, OCBR media are excellent alternative for algae growth and have a great potential for large-scale production of algae-based ingredients for biodiesel as well as high-value food and pharmaceutical products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Plaza, M., Cifuentes, A., & Ibanez, E. (2008). In the search of new functional food ingredients from algae. Trends in Food Science & Technology, 19, 31–39.

    Article  CAS  Google Scholar 

  2. Radmer, R. J., & Parker, B. C. (1994). Commercial applications of algae: opportunities and constraints. Journal of Applied Phycology, 6, 93–98.

    Article  Google Scholar 

  3. Neuringer M and Conner WE (1987). The importance of dietary n-3 fatty acids in the development of the retina and nervous system. In Lands WEM (ed.) Proc. of the AOCS Short Course on Polyunsaturated Fatty Acids and Eicosanoids. American Oil Chemists Society, Champaign, Illinois, 574 pp.

  4. Kyle DJ, Boswell KDB, Gladue RM and Reeb SE (1992). Designer oils from microalgae as nutritional supplements. In: Bills DB, Kung S (eds) Biotechnology and Nutrition, Proceedings of the 3rd International Symposium. Butterworth-Heinemann, Boston, 468 pp.

  5. Barclay, W. R., Meager, K. M., & Abril, J. R. (1994). Heterotrophic production of long chain omega-3 fatty acids utilizing algae and algae-like microorganisms. Journal of Applied Phycology, 6, 123–129.

    Article  CAS  Google Scholar 

  6. Su, H. Y., Zhang, Y. L., Zhang, C., Zhou, X. F., & Li, J. P. (2011). Cultivation of Chlorella pyrenoidosa in soybean processing wastewater. Bioresource Technology, 102, 9884–9890.

    Article  CAS  Google Scholar 

  7. Li, Y. C., Chen, Y. F., Chen, P., Min, M., Zhou, W. G., Martinez, B., et al. (2011). Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production. Bioresource Technology, 102, 5138–5144.

    Article  CAS  Google Scholar 

  8. Zhou, W. G., Cheng, Y. L., Li, Y., Wan, Y. Q., Liu, Y. H., Lin, X. Y., et al. (2012). Novel fungal pelletization-assisted technology for algae harvesting and wastewater treatment. Applied Biochemistry and Biotechnology, 167, 214–228.

    Article  CAS  Google Scholar 

  9. Chinnasamy, S., Bhatnagar, A., Hunt, R. W., & Das, K. C. (2010). Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresource Technology, 101, 3097–3105.

    Article  CAS  Google Scholar 

  10. McKinley, K. R., & Wetzel, R. G. (1979). Photolithotrophy, photoheterotrophy, and chemoheterotrophy: patterns of resource utilization on an annual and a diurnal basis within a pelagic microbial community. Microbial Ecology, 5, 1–15.

    Article  CAS  Google Scholar 

  11. Pan LJ, Zhang CC, Jiang ST and Ruan SJ (2007). Medium optimization of L-lactic acid fermentation by lactic acid bacteria with rape cake hydrolysate as nitrogen source. Food Science, 28(10), 313–316.

    Google Scholar 

  12. Li, Z., Ding, S. F., Li, Z. P., & Tan, T. W. (2006). L-Lactic acid production by Lactobacillus casei fermentation with corn steep liquor-supplemented acid-hydrolysate of soybean meal. Biotechnology Journal, 1, 1453–1458.

    Article  CAS  Google Scholar 

  13. Lee, J. Y., Lee, H. D., & Lee, C. H. (2001). Characterization of hydrolysates produced by mild-acid treatment and enzymatic hydrolysis of defatted soybean flour. Food Research International, 34, 217–222.

    Article  CAS  Google Scholar 

  14. Lee, J. H., & Choung, M. G. (2011). Determination of optimal acid hydrolysis time of soybean isoflavones using drying oven and microwave assisted methods. Food Chemistry, 129, 577–582.

    Article  CAS  Google Scholar 

  15. Chiang, W. D., Shih, C. J., & Chu, Y. H. (2001). Optimization of acid hydrolysis conditions for total isoflavones analysis in soybean hypocotyls by using RSM. Food Chemistry, 72, 499–503.

    Article  CAS  Google Scholar 

  16. Cheng, Y., Lu, Y., Gao, C. F., & Wu, Q. Y. (2009). Alga-based biodiesel production and optimization using sugar cane as the feedstock. Energy & Fuels, 23, 4166–4173.

    Article  CAS  Google Scholar 

  17. Converti, A., Casazza, A. A., Ortiz, E. Y., Perego, P., & Del Borghi, M. (2009). Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chemical Engineering and Processing, 48, 1146–1151.

    Article  CAS  Google Scholar 

  18. Ruangsomboon, S. (2012). Effect of light, nutrient, cultivation time and salinity on lipid production of newly isolated strain of the green microalga, Botryococcus braunii KMITL 2. Bioresource Technology, 109, 261–265.

    Article  CAS  Google Scholar 

  19. Zhou, W. G., Li, Y., Min, M., Hu, B., Chen, P., & Ruan, R. (2011). Local bioprospecting for high-lipid producing microalgal strains to be grown on concentrated municipal wastewater for biofuel production. Bioresource Technology, 102(13), 6909–19.

    Article  CAS  Google Scholar 

  20. Rippka, R., Deruelles, J., Waterbury, J., Herdman, M., & Stanier, R. (1979). Generic assignments, strain and properties of pure cultures of cyanobacteria. Journal of General Microbiology, 111, 1–61.

    Article  Google Scholar 

  21. Hu, B., Min, M., Zhou, W. G., Li, Y. C., Mohr, M., Cheng, Y. L., et al. (2012). Influence of exogenous CO2 on biomass and lipid accumulation of microalgae Auxenochlorella protothecoides cultivated in concentrated municipal wastewater. Applied Biochemistry and Biotechnology, 166, 1661–1673.

    Article  CAS  Google Scholar 

  22. Xiong, W., Gao, C. F., Yan, D., Wu, C., & Wu, Q. Y. (2010). Double CO2 fixation in photosynthesis–fermentation model enhances algal lipid synthesis for biodiesel production. Bioresource Technology, 101, 2287–2293.

    Article  CAS  Google Scholar 

  23. Kumon, Y., Yokochi, T., & Nakahara, T. (2005). High yield of long-chain polyunsaturated fatty acids by labyrinthulids on soybean lecithin-dispersed agar medium. Applied Microbiology and Biotechnology, 69, 253–258.

    Article  CAS  Google Scholar 

  24. Choudhari, S., & Singhal, R. (2008). Media optimization for the production of b-carotene by Blakeslea trispora: a statistical approach. Bioresource Technology, 99, 722–730.

    Article  CAS  Google Scholar 

  25. Zhou, W. G., Min, M., Li, Y. C., Hu, B., Ma, X. C., Cheng, Y. L., et al. (2012). A hetero-photoautotrophic two-stage cultivation process to improve wastewater nutrient removal and enhance algal lipid accumulation. Bioresource Technology, 110, 448–455.

    Article  CAS  Google Scholar 

  26. Hach Procedure Manual (2008). Hach, Loveland, CO.

  27. Folch, J., Lees, M., & Sloane Stanley, G. H. (1956). A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry, 497–509.

  28. Indarti, E., Majid, M. I. A., Hashim, R., & Chong, A. (2005). Direct FAME synthesis for rapid total lipid analysis from fish oil and cod liver oil. Journal of Food Composition and Analysis, 18(2–3), 161–170.

    Article  CAS  Google Scholar 

  29. APHA, AWWA, & WEF. (1995). Standard methods for the examination of water and wastewater (19th ed.). Washington, DC: American Public Health Association.

    Google Scholar 

  30. Zhou, W. G., Li, Y. C., Min, M., Hu, B., Zhang, H., Ma, X. C., et al. (2012). Growing wastewater-born microalga Auxenochlorella protothecoides UMN280 on concentrated municipal wastewater for simultaneous nutrient removal and energy feedstock production. Applied Energy., 98, 433–440.

    Article  CAS  Google Scholar 

  31. Zheng, Y. B., Chi, Z. Y., Lucker, B., & Chen, S. L. (2012). Two-stage heterotrophic and phototrophic culture strategy for algal biomass and lipid production. Bioresource Technology, 103(1), 484–488.

    Article  CAS  Google Scholar 

  32. Bajpai, P., & Bajpai, P. K. (1992). Eicosapentaenoic acid (EPA) production from microorganisms: a review. Journal of Biotechnology, 30, 161–183.

    Article  Google Scholar 

  33. Vazhappilly, R., & Chen, F. (1998). Eicosapentaenoic acid and docosahexaenoic acid productionof microalgae and their heterotrophic growth. Journal of the American Oil Chemists’ Society, 75(3), 393–397.

    Google Scholar 

  34. Grima, E. M., González, M. J. I., & Giménez, A. G. (2013). Solvent extraction for microalgae lipids. Algae for Biofuels and Energy, 5, 187–205.

    Article  Google Scholar 

  35. Piorreck, M., Baasch, K. H., & Pohl, P. (1984). Biomass production, total protein, chlorophylls, lipids and fatty acids of freshwater green and blue-green algae under different nitrogen regimes. Phyrochemisrry, 23(2), 207–216.

    Article  CAS  Google Scholar 

  36. Moheimani, N. R. (2013). Inorganic carbon and pH effect on growth and lipid productivity of Tetraselmis suecica and Chlorella sp (Chlorophyta) grown outdoors in bag photobioreactors. Journal of Applied Phycology, 25(2), 387–398.

    Article  CAS  Google Scholar 

  37. Wu BC, Stephen D, Morgenthaler GE and Jones DV (2010). Systems and methods for producing eicosapentaenoic acid and docosahexaenoic acid from algae. United States Patent Application Publication, No. US2010/0236137 A1.

Download references

Acknowledgments

The study was partially supported by grants from the University of Minnesota Center for Biorefining, the Legislative-Citizen Commission on Minnesota Resources, and the China 863 Projects (2012AA021704), NSF of China (grant 21177067), the Key Program of Natural Science of the Jiangsu Province of China (grant BK2010034), and China International Cooperation Projects (2010DFB63750).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenguang Zhou or Roger Ruan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z., Ma, X., Zhou, W. et al. Oil Crop Biomass Residue-Based Media for Enhanced Algal Lipid Production. Appl Biochem Biotechnol 171, 689–703 (2013). https://doi.org/10.1007/s12010-013-0387-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0387-8

Keywords

Navigation