Skip to main content
Log in

Effects of Ascorbic Acid on PVS2 Cryopreservation of Dendrobium Bobby Messina’s PLBs Supported with SEM Analysis

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Regrowth of the cryopreserved protocorm-like bodies (PLBs) of Dendrobium Bobby Messina was assessed based on the plant vitrification solution 2 (PVS2) optimisation conditions. The optimized protocol obtained based on TTC spectrophotometrical analysis and growth recovery were 3–4 mm of PLBs size precultured in 0.2 M sucrose for 1 day, treated with a mixture of 2 M glycerol and 0.4 M sucrose supplemented with half-strength liquid MS media at 25 °C for 20 min and subsequently dehydrated with PVS2 at 0 °C for 20 min prior to storage in liquid nitrogen. Following rapid warming in a water bath at 40 °C for 90 s, PLBs were treated with unloading solution containing half-strength liquid MS media supplemented with 1.2 M sucrose. Subsequently, the PLBs were cultured on half-strength semi-solid MS media supplemented with 2 % (w/v) sucrose without any growth regulators and resulted in 40 % growth recovery. In addition, ascorbic acid treatment was used to evaluate the regeneration process of cryopreserved PLBs. However, growth recovery rates of non-cryopreserved and cryopreserved PLBs were 30 and 10 % when 0.6 mM ascorbic acid was added. Scanning electron microscopy analysis indicates that there are not much damages observed on both cryopreserved and non-cryopreserved PLBs in comparison to PLBs stock culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

PLB:

Protocorm-like bodies

PVS2:

Plant vitrification solution

+ LN:

Cryopreserved PLBs

− LN:

Non-cryopreserved PLB

References

  1. Godo, T., Komori, M., Nakaoki, E., Yukawa, T., & Miyoshi, K. (2010). In Vitro Cellular & Developmental Biology. Plant, 46, 323–328.

    Article  CAS  Google Scholar 

  2. Bajaj, Y. P. S. (1995). In Y. P. S. Bajaj (Ed.), Biotechnology in agriculture and forestry cryopreservation of plant germplasm, vol 1: Cryopreservation of plant cell, tissue and organ culture for the conservation of germplasm and biodiversity (pp. 3–18). New York: Springer.

    Google Scholar 

  3. Towill, L. E. (1996). In R. S. Trigiano & D. J. Gray (Eds.), Plant tissue culture concepts and laboratory exercises, vitrification as a method to cryopreserve shoot tips (pp. 297–304). Boca Raton: CRC Press.

    Google Scholar 

  4. Engelmann, F. (2000). in Cryopreservation of tropical germplasm Current Research Progress and Application, Importance of cryopreservation for the conservation of plant genetic resources (Engelmann, F. & Takagi, H., eds), Japan International Research Center for Agricultural Sciences and International Plant Genetic Resources Institute, Rome, pp. 8–20.

  5. Burritt, D. J. (2008). Plant Cell, Tissue and Organ Culture, 95, 209–215.

    Article  CAS  Google Scholar 

  6. Engelmann, F. (1997). Plant Genetic Resources Newsletter, 112, 9–18.

    Google Scholar 

  7. Martinez, D., Tames, S. R., & Revilla, A. M. (1999). Plant Cell Report, 19, 59–63.

    Article  CAS  Google Scholar 

  8. Sakai, A., Matsumoto, T., Hirai, D., & Niino, T. (2000). Cryo-Letters, 21, 53–62.

    Google Scholar 

  9. Gonzalez-Arnao, M. T., Panta, A., Roca, W. M., Escobar, R. H., & Engelmann, F. (2008). Plant Cell, Tissue and Organ Culture, 92, 1–13.

    Article  Google Scholar 

  10. Khoddamzadeh, A. A., Sinniah, U. R., Lynch, P., Kadir, M. A., Kadzimin, S. B., & Mahmood, M. (2011). Plant Cell, Tissue and Organ Culture, 107, 471–481.

    Article  Google Scholar 

  11. Hirano, T., Ishikawa, K., & Mii, M. (2006). In J. A. T. da Silva (Ed.), Floriculture, ornamental and plant biotechnology, advances and topical issues, vol. II: Advances in orchid cryopreservation (pp. 410–414). Ikenobe: Global Science Books.

    Google Scholar 

  12. Tsai, S. F., Yeh, S. D., Chan, C. F., & Liaw, S. I. (2009). Plant Cell, Tissue and Organ Culture, 98, 157–164.

    Article  CAS  Google Scholar 

  13. Wusteman, M., Pegg, D., Robinson, M., Wang, L., & Fitch, P. (2002). Cryobiology, 44, 24–37.

    Article  CAS  Google Scholar 

  14. Na, Y. H., & Kondo, K. (1996). Plant Science, 118, 195–201.

    Article  CAS  Google Scholar 

  15. Ishikawa, K., Harata, K., Mii, M., Sakai, A., Yoshimatsu, K., & Shimomura, K. (1997). Plant Cell Reports, 16, 754–757.

    Article  CAS  Google Scholar 

  16. Hirano, T., Ishikawa, K., & Mii, M. (2005). Cryo-Letters, 26, 139–146.

    CAS  Google Scholar 

  17. Datta, B. K., Kanjilal, B., & Sarker, D. D. (1999). Current Science, 74, 1142–1145.

    Google Scholar 

  18. Luo, J. P., Wang, Y., Zha, X. Q., & Huang, L. (2008). Plant Cell, Tissue and Organ Culture, 93, 333–340.

    Article  CAS  Google Scholar 

  19. Tsukazaki, H., Mii, M., Tokuhara, K., & Ishikawa, K. (2000). Plant Cell Reports, 19, 1160–1164.

    Article  CAS  Google Scholar 

  20. Lurswijidjarus, W., & Thammasiri, K. (2004). Science Asia, 30, 293–299.

    Article  Google Scholar 

  21. Thammasiri, K. (2000). Cryo-Letters, 21, 237–244.

    Google Scholar 

  22. Hirano, T., Godo, T., Mii, M., & Ishikawa, K. (2005). Plant Cell Reports, 23, 534–539.

    Article  CAS  Google Scholar 

  23. Gonzalez-Arnao, M. T., Lazara-Vallejo, C. E., Engelmann, F., Gamez-Pastrana, R., Martinez-Ocampo, Y. M., Pastelin-Solano, M. C., et al. (2009). In Vitro Cellular & Developmental Biology. Plant, 45, 574–582.

    Article  Google Scholar 

  24. Murashige, T., & Skoog, F. (1962). Physiologia Plantarum, 15, 473–497.

    Article  CAS  Google Scholar 

  25. Sakai, A., Kobayashi, S., & Oiyama, I. (1990). Plant Cell Reports, 9, 30–33.

    Article  Google Scholar 

  26. Sakai, A., Koboyashi, S., & Oiyama, I. (1991). Journal of Plant Physiology, 137, 465–470.

    Article  Google Scholar 

  27. Verleysen, H., Samyn, G., Bockstaele, E. V., & Debergh, P. (2004). Plant Cell, Tissue and Organ Culture, 77, 11–21.

    Article  CAS  Google Scholar 

  28. Benson, E. E., Johnson, J., Muthusamy, J., & Harding, K. (2008). In S. D. Gupta & Y. Ibaraki (Eds.), Physical and engineering perspectives of in vitro plant cryopreservation, plant tissue culture engineering (pp. 441–476). Malaysia: Springer.

  29. Day, J. G., Harding, K. C., Nadarajan, J., & Benson, E. E. (2008). Cryopreservation: Conservation of bioresources at ultra low temperatures. In J. M. Walker & R. Rapley (Eds.), Molecular biomethods handbook (pp. 917–947). Totowa: Humana Press.

    Chapter  Google Scholar 

  30. Panis, B., & Lambardi, M. (2005). International workshop on “The role of biotechnology for characterization and conservation of crop, forestry, animal and fishery genetic resources”, Turin, Italy, pp. 43–54.

  31. Panis, B. (2008). In B. M. Reed (Ed.), Plant cryopreservation, a practical guide, Cryopreservation of monocots (pp. 241–251). New York: Springer.

  32. Walters, C., Farrant, J. M., Pammenter, N. W., & Berjak, P. (2002). In M. Black & H. W. Pritchard (Eds.), Desiccation and survival in plants: drying without dying, desiccation stress and damage (pp. 263–291). Oxford: Oxford University Press.

    Chapter  Google Scholar 

  33. Subramaniam, S., Sinniah, U. R., Khoddamzadeh, A. A., Periasamy, S., & James, J. J. (2011). African Journal of Biotechnology, 10, 3902–3907.

    Google Scholar 

  34. Yin, L. L., Poobathy, R., James, J., Julkifle, A. L., & Subramaniam, S. (2011). African Journal of Biotechnology, 10, 4665–4672.

    Google Scholar 

  35. Wang, Q., Tanne, E., Arav, A., & Gafny, R. (2000). Plant Cell, Tissue and Organ Culture, 63, 41–46.

    Article  CAS  Google Scholar 

  36. Antony, J. J. J., Lai Keng, C., Rathinam, X., & Subramaniam, S. (2010). African Journal of Biotechnology, 9, 7063–7070.

    CAS  Google Scholar 

  37. Antony, J. J. J., Keng, C. L., Rathinam, X., Marimuthu, S., & Subramaniam, S. (2011). Australian Journal of Crop Science, 5, 1557–1564.

    CAS  Google Scholar 

  38. Thinh, N. T. (1997). PhD Thesis, Faculty of Agriculture, Kobe University, Japan.

  39. Nishizawa, S., Sakai, A., Amano, Y., & Matsuzawa, T. (1993). Plant Science, 91, 67–73.

    Article  CAS  Google Scholar 

  40. Kuranuki, Y., & Sakai, A. (1995). CryoLetters, 16, 345–352.

    Google Scholar 

  41. Yoshimatsu, K., Yamaguchi, H., & Shimomura, K. (1996). Plant Cell Reports, 15, 555–560.

    Article  CAS  Google Scholar 

  42. Matsumoto, T., Sakai, A., & Yamada, K. (1994). Plant Cell Reports, 13, 442–446.

    Article  Google Scholar 

  43. Takagi, H., Thinh, N. T., Sakai, A., & Senboku, T. (1997). Plant Cell Reports, 16, 594–599.

    Article  CAS  Google Scholar 

  44. Niino, T., Sakai, A., Yakuwa, H., & Nojiri, K. (1992). Plant Cell, Tissue and Organ Culture, 28, 261–266.

    Article  Google Scholar 

  45. Niino, T., Takano, J., Saga, T., & Kobayashi, M. (2003). Horticultural Research (Japan), 2, 241–245.

    Article  Google Scholar 

  46. Dussert, S., Engelmann, F., & Noirot, M. (2003). CryoLetters, 24, 149–160.

    Google Scholar 

  47. Uchendu, E. E., Leonard, S. W., Traber, M. G., & Reed, B. M. (2009). Plant Cell Reports, 29, 25–35.

    Article  Google Scholar 

  48. Halliwell, B., & Gutteridge, J. M. C. (1984). Biochemical Journal, 219, 1–14.

    CAS  Google Scholar 

  49. Halliwell, B. (2006). Plant Physiology, 141, 312–322.

    Article  CAS  Google Scholar 

  50. Zheng, Q., Ju, B., Liang, L., & Xiao, X. (2005). Plant Cell, Tissue and Organ Culture, 81, 83–90.

    Article  CAS  Google Scholar 

  51. Thammasiri, K., & Soamkul, L. (2007). Science Asia, 33, 223–227.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Universiti Sains Malaysia Research Grant 2011 (USM) and National Science Fellowship (NSF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sreeramanan Subramaniam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antony, J.J.J., Keng, C.L., Mahmood, M. et al. Effects of Ascorbic Acid on PVS2 Cryopreservation of Dendrobium Bobby Messina’s PLBs Supported with SEM Analysis. Appl Biochem Biotechnol 171, 315–329 (2013). https://doi.org/10.1007/s12010-013-0369-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0369-x

Keywords

Navigation